File size: 4,990 Bytes
377127e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch


def flexible_kernel(X, Y, X_org, Y_org, sigma, sigma0=0.1, epsilon=1e-08):
    """Flexible kernel calculation as in MMDu."""
    Dxy = Pdist2(X, Y)
    Dxy_org = Pdist2(X_org, Y_org)
    L = 1
    Kxy = (1 - epsilon) * torch.exp(
        -((Dxy / sigma0) ** L) - Dxy_org / sigma
    ) + epsilon * torch.exp(-Dxy_org / sigma)
    return Kxy


def MMD_Diff_Var(Kyy, Kzz, Kxy, Kxz, epsilon=1e-08):
    """Compute the variance of the difference statistic MMDXY - MMDXZ."""
    """Referenced from: https://github.com/eugenium/MMD/blob/master/mmd.py"""
    m = Kxy.shape[0]
    n = Kyy.shape[0]
    r = Kzz.shape[0]

    # Remove diagonal elements
    Kyynd = Kyy - torch.diag(torch.diag(Kyy))
    Kzznd = Kzz - torch.diag(torch.diag(Kzz))

    u_yy = torch.sum(Kyynd) * (1.0 / (n * (n - 1)))
    u_zz = torch.sum(Kzznd) * (1.0 / (r * (r - 1)))
    u_xy = torch.sum(Kxy) / (m * n)
    u_xz = torch.sum(Kxz) / (m * r)

    t1 = (1.0 / n**3) * torch.sum(Kyynd.T @ Kyynd) - u_yy**2
    t2 = (1.0 / (n**2 * m)) * torch.sum(Kxy.T @ Kxy) - u_xy**2
    t3 = (1.0 / (n * m**2)) * torch.sum(Kxy @ Kxy.T) - u_xy**2
    t4 = (1.0 / r**3) * torch.sum(Kzznd.T @ Kzznd) - u_zz**2
    t5 = (1.0 / (r * m**2)) * torch.sum(Kxz @ Kxz.T) - u_xz**2
    t6 = (1.0 / (r**2 * m)) * torch.sum(Kxz.T @ Kxz) - u_xz**2
    t7 = (1.0 / (n**2 * m)) * torch.sum(Kyynd @ Kxy.T) - u_yy * u_xy
    t8 = (1.0 / (n * m * r)) * torch.sum(Kxy.T @ Kxz) - u_xz * u_xy
    t9 = (1.0 / (r**2 * m)) * torch.sum(Kzznd @ Kxz.T) - u_zz * u_xz

    if type(epsilon) == torch.Tensor:
        epsilon_tensor = epsilon.clone().detach()
    else:
        epsilon_tensor = torch.tensor(epsilon, device=Kyy.device)
    zeta1 = torch.max(t1 + t2 + t3 + t4 + t5 + t6 - 2 * (t7 + t8 + t9), epsilon_tensor)
    zeta2 = torch.max(
        (1 / m / (m - 1)) * torch.sum((Kyynd - Kzznd - Kxy.T - Kxy + Kxz + Kxz.T) ** 2)
        - (u_yy - 2 * u_xy - (u_zz - 2 * u_xz)) ** 2,
        epsilon_tensor,
    )

    data = {
        "t1": t1.item(),
        "t2": t2.item(),
        "t3": t3.item(),
        "t4": t4.item(),
        "t5": t5.item(),
        "t6": t6.item(),
        "t7": t7.item(),
        "t8": t8.item(),
        "t9": t9.item(),
        "zeta1": zeta1.item(),
        "zeta2": zeta2.item(),
    }

    Var = (4 * (m - 2) / (m * (m - 1))) * zeta1
    Var_z2 = Var + (2.0 / (m * (m - 1))) * zeta2

    return Var, Var_z2, data


def Pdist2(x, y):
    """compute the paired distance between x and y."""
    x_norm = (x**2).sum(1).view(-1, 1)
    if y is not None:
        y_norm = (y**2).sum(1).view(1, -1)
    else:
        y = x
        y_norm = x_norm.view(1, -1)
    Pdist = x_norm + y_norm - 2.0 * torch.mm(x, torch.transpose(y, 0, 1))
    Pdist[Pdist < 0] = 0
    return Pdist


def MMD_batch2(
    Fea,
    len_s,
    Fea_org,
    sigma,
    sigma0=0.1,
    epsilon=10 ** (-10),
    is_var_computed=True,
    use_1sample_U=True,
    coeff_xy=2,
):
    X = Fea[0:len_s, :]
    Y = Fea[len_s:, :]
    L = 1  # generalized Gaussian (if L>1)

    nx = X.shape[0]
    ny = Y.shape[0]
    Dxx = Pdist2(X, X)
    Dyy = torch.zeros(Fea.shape[0] - len_s, 1).to(Dxx.device)
    # Dyy = Pdist2(Y, Y)
    Dxy = Pdist2(X, Y).transpose(0, 1)
    Kx = torch.exp(-Dxx / sigma0)
    Ky = torch.exp(-Dyy / sigma0)
    Kxy = torch.exp(-Dxy / sigma0)

    nx = Kx.shape[0]

    is_unbiased = False
    xx = torch.div((torch.sum(Kx)), (nx * nx))
    yy = Ky.reshape(-1)
    xy = torch.div(torch.sum(Kxy, dim=1), (nx))

    mmd2 = xx - 2 * xy + yy
    return mmd2


# MMD for three samples
def MMD_3_Sample_Test(
    ref_fea,
    fea_y,
    fea_z,
    ref_fea_org,
    fea_y_org,
    fea_z_org,
    sigma,
    sigma0,
    epsilon,
    alpha,
):
    """Run three-sample test (TST) using deep kernel kernel."""
    X = ref_fea.clone().detach()
    Y = fea_y.clone().detach()
    Z = fea_z.clone().detach()
    X_org = ref_fea_org.clone().detach()
    Y_org = fea_y_org.clone().detach()
    Z_org = fea_z_org.clone().detach()

    Kyy = flexible_kernel(Y, Y, Y_org, Y_org, sigma, sigma0, epsilon)
    Kzz = flexible_kernel(Z, Z, Z_org, Z_org, sigma, sigma0, epsilon)
    Kxy = flexible_kernel(X, Y, X_org, Y_org, sigma, sigma0, epsilon)
    Kxz = flexible_kernel(X, Z, X_org, Z_org, sigma, sigma0, epsilon)

    Kyynd = Kyy - torch.diag(torch.diag(Kyy))
    Kzznd = Kzz - torch.diag(torch.diag(Kzz))

    Diff_Var, _, _ = MMD_Diff_Var(Kyy, Kzz, Kxy, Kxz, epsilon)

    u_yy = torch.sum(Kyynd) / (Y.shape[0] * (Y.shape[0] - 1))
    u_zz = torch.sum(Kzznd) / (Z.shape[0] * (Z.shape[0] - 1))
    u_xy = torch.sum(Kxy) / (X.shape[0] * Y.shape[0])
    u_xz = torch.sum(Kxz) / (X.shape[0] * Z.shape[0])

    t = u_yy - 2 * u_xy - (u_zz - 2 * u_xz)
    if Diff_Var.item() <= 0:
        Diff_Var = torch.max(epsilon, torch.tensor(1e-08))
    p_value = torch.distributions.Normal(0, 1).cdf(-t / torch.sqrt((Diff_Var)))
    t = t / torch.sqrt(Diff_Var)

    if p_value > alpha:
        h = 0
    else:
        h = 1

    return h, p_value.item(), t.item()