File size: 5,033 Bytes
d97734e
8c68259
 
 
f6d8146
8c68259
d97734e
936b250
8c68259
 
 
 
 
 
936b250
8c68259
f6d8146
8c68259
f6d8146
 
 
 
 
 
 
 
 
936b250
f6d8146
 
 
 
8c68259
 
 
 
 
63c0903
fa64871
899f27e
 
 
011ac7a
02185e1
f6d8146
 
 
9b7ecd8
f6d8146
 
 
 
939a105
f6d8146
 
 
 
5f71889
b2f5f8e
 
8946536
f6d8146
 
02185e1
 
 
14ba27e
f6d8146
76c593e
7c8d189
08d000a
 
f6d8146
 
 
 
 
 
 
 
 
 
 
e40a325
d97734e
 
 
939a105
d97734e
936b250
fa64871
8c68259
 
53c66e2
 
 
 
 
 
 
8c68259
 
d97734e
 
 
936b250
d97734e
b2f5f8e
d97734e
afd1fe2
 
53c66e2
afd1fe2
b9faac8
f6d8146
afd1fe2
d97734e
8c68259
 
 
 
 
 
 
 
 
 
 
 
 
d97734e
bd0295f
8c68259
 
d97734e
936b250
f6d8146
8c68259
 
53c66e2
 
8c68259
 
53c66e2
f6d8146
8c68259
 
53c66e2
 
 
 
 
 
 
 
8c68259
 
d97734e
8c68259
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
from relative_tester import relative_tester
# from two_sample_tester import two_sample_tester
from utils import init_random_seeds

init_random_seeds()


def run_test(input_text):
    if not input_text:
        return "Now that you've built a demo, you'll probably want to share it with others. Gradio demos can be shared in two ways: using a temporary share link or permanent hosting on Spaces."
    # return two_sample_tester.test(input_text.strip())
    return relative_tester.test(input_text.strip())
    return f"Prediction: Human (Mocked for {input_text})"

# TODO: Add model selection in the future
# Change mode name
# def change_mode(mode):
#    if mode == "Faster Model":
#        .change_mode("t5-small")
#    elif mode == "Medium Model":
#        .change_mode("roberta-base-openai-detector")
#    elif mode == "Powerful Model":
#        .change_mode("falcon-rw-1b")
#    else:
#        gr.Error(f"Invaild mode selected.")
#    return mode


css = """
#header { text-align: center; font-size: 3em; margin-bottom: 20px; }
#output-text { font-weight: bold; font-size: 1.2em; }
.links {
    display: flex;
    justify-content: flex-end;
    gap: 10px;
    margin-right: 10px;
    align-items: center;
}
.separator {
    margin: 0 5px;
    color: black;
}

/* Adjusting layout for Input Text and Inference Result */
.input-row {
    display: flex;
    width: 100%;
}

.input-text {
    flex: 3;  /* 4 parts of the row */
    margin-right: 1px;
}

.output-text {
    flex: 1;  /* 1 part of the row */
}

/* Set button widths to match the Select Model width */
.button {
    width: 250px;  /* Same as the select box width */
    height: 100px;  /* Button height */
}

/* Set height for the Select Model dropdown */
.select {
    height: 100px;  /* Set height to 100px */
}

/* Accordion Styling */
.accordion {
    width: 100%;  /* Set the width of the accordion to match the parent */
    max-height: 200px;  /* Set a max-height for accordion */
    overflow-y: auto;  /* Allow scrolling if the content exceeds max height */
    margin-bottom: 10px;  /* Add space below accordion */
    box-sizing: border-box;  /* Ensure padding is included in width/height */
}

/* Accordion content max-height */
.accordion-content {
    max-height: 200px;  /* Limit the height of the content */
    overflow-y: auto;  /* Add a scrollbar if content overflows */
}
"""

# Gradio App
with gr.Blocks(css=css) as app:
    with gr.Row():
        gr.HTML('<div id="header">R-detect On HuggingFace</div>')
    with gr.Row():
        gr.HTML(
            """
        <div class="links">
            <a href="https://openreview.net/forum?id=z9j7wctoGV" target="_blank">Paper</a>
            <span class="separator">|</span>
            <a href="https://github.com/xLearn-AU/R-Detect" target="_blank">Code</a>
            <span class="separator">|</span>
            <a href="mailto:[email protected]" target="_blank">Contact</a>
        </div>
        """
        )
    with gr.Row():
        input_text = gr.Textbox(
            label="Input Text",
            placeholder="Enter Text Here",
            lines=8,
            elem_classes=["input-text"],  # Applying the CSS class
        )
        output = gr.Textbox(
            label="Inference Result",
            placeholder="Made by Human or AI",
            elem_id="output-text",
            lines=8,
            elem_classes=["output-text"],
        )
    with gr.Row():
        # TODO: Add model selection in the future
        # model_name = gr.Dropdown(
        #     [
        #         "Faster Model",
        #         "Medium Model",
        #         "Powerful Model",
        #     ],
        #     label="Select Model",
        #     value="Medium Model",
        #     elem_classes=["select"],
        # )
        submit_button = gr.Button(
            "Run Detection", variant="primary", elem_classes=["button"]
        )
        clear_button = gr.Button("Clear", variant="secondary", elem_classes=["button"])

    submit_button.click(run_test, inputs=[input_text], outputs=output)
    clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])

    with gr.Accordion("Disclaimer", open=False, elem_classes=["accordion"]):
        gr.Markdown(
            """
        - **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector.
        - **Accuracy**: Results may vary based on input length and quality.
        """
        )

    with gr.Accordion("Citations", open=False, elem_classes=["accordion"]):
        gr.Markdown(
            """
        ```
        @inproceedings{zhangs2024MMDMP,
            title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy},
            author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui},
            booktitle = {International Conference on Learning Representations (ICLR)},
            year={2024}
        }
        ```
        """
        )

app.launch()