Spaces:
Running
Running
File size: 5,033 Bytes
d97734e 8c68259 f6d8146 8c68259 d97734e 936b250 8c68259 936b250 8c68259 f6d8146 8c68259 f6d8146 936b250 f6d8146 8c68259 63c0903 fa64871 899f27e 011ac7a 02185e1 f6d8146 9b7ecd8 f6d8146 939a105 f6d8146 5f71889 b2f5f8e 8946536 f6d8146 02185e1 14ba27e f6d8146 76c593e 7c8d189 08d000a f6d8146 e40a325 d97734e 939a105 d97734e 936b250 fa64871 8c68259 53c66e2 8c68259 d97734e 936b250 d97734e b2f5f8e d97734e afd1fe2 53c66e2 afd1fe2 b9faac8 f6d8146 afd1fe2 d97734e 8c68259 d97734e bd0295f 8c68259 d97734e 936b250 f6d8146 8c68259 53c66e2 8c68259 53c66e2 f6d8146 8c68259 53c66e2 8c68259 d97734e 8c68259 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
from relative_tester import relative_tester
# from two_sample_tester import two_sample_tester
from utils import init_random_seeds
init_random_seeds()
def run_test(input_text):
if not input_text:
return "Now that you've built a demo, you'll probably want to share it with others. Gradio demos can be shared in two ways: using a temporary share link or permanent hosting on Spaces."
# return two_sample_tester.test(input_text.strip())
return relative_tester.test(input_text.strip())
return f"Prediction: Human (Mocked for {input_text})"
# TODO: Add model selection in the future
# Change mode name
# def change_mode(mode):
# if mode == "Faster Model":
# .change_mode("t5-small")
# elif mode == "Medium Model":
# .change_mode("roberta-base-openai-detector")
# elif mode == "Powerful Model":
# .change_mode("falcon-rw-1b")
# else:
# gr.Error(f"Invaild mode selected.")
# return mode
css = """
#header { text-align: center; font-size: 3em; margin-bottom: 20px; }
#output-text { font-weight: bold; font-size: 1.2em; }
.links {
display: flex;
justify-content: flex-end;
gap: 10px;
margin-right: 10px;
align-items: center;
}
.separator {
margin: 0 5px;
color: black;
}
/* Adjusting layout for Input Text and Inference Result */
.input-row {
display: flex;
width: 100%;
}
.input-text {
flex: 3; /* 4 parts of the row */
margin-right: 1px;
}
.output-text {
flex: 1; /* 1 part of the row */
}
/* Set button widths to match the Select Model width */
.button {
width: 250px; /* Same as the select box width */
height: 100px; /* Button height */
}
/* Set height for the Select Model dropdown */
.select {
height: 100px; /* Set height to 100px */
}
/* Accordion Styling */
.accordion {
width: 100%; /* Set the width of the accordion to match the parent */
max-height: 200px; /* Set a max-height for accordion */
overflow-y: auto; /* Allow scrolling if the content exceeds max height */
margin-bottom: 10px; /* Add space below accordion */
box-sizing: border-box; /* Ensure padding is included in width/height */
}
/* Accordion content max-height */
.accordion-content {
max-height: 200px; /* Limit the height of the content */
overflow-y: auto; /* Add a scrollbar if content overflows */
}
"""
# Gradio App
with gr.Blocks(css=css) as app:
with gr.Row():
gr.HTML('<div id="header">R-detect On HuggingFace</div>')
with gr.Row():
gr.HTML(
"""
<div class="links">
<a href="https://openreview.net/forum?id=z9j7wctoGV" target="_blank">Paper</a>
<span class="separator">|</span>
<a href="https://github.com/xLearn-AU/R-Detect" target="_blank">Code</a>
<span class="separator">|</span>
<a href="mailto:[email protected]" target="_blank">Contact</a>
</div>
"""
)
with gr.Row():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter Text Here",
lines=8,
elem_classes=["input-text"], # Applying the CSS class
)
output = gr.Textbox(
label="Inference Result",
placeholder="Made by Human or AI",
elem_id="output-text",
lines=8,
elem_classes=["output-text"],
)
with gr.Row():
# TODO: Add model selection in the future
# model_name = gr.Dropdown(
# [
# "Faster Model",
# "Medium Model",
# "Powerful Model",
# ],
# label="Select Model",
# value="Medium Model",
# elem_classes=["select"],
# )
submit_button = gr.Button(
"Run Detection", variant="primary", elem_classes=["button"]
)
clear_button = gr.Button("Clear", variant="secondary", elem_classes=["button"])
submit_button.click(run_test, inputs=[input_text], outputs=output)
clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])
with gr.Accordion("Disclaimer", open=False, elem_classes=["accordion"]):
gr.Markdown(
"""
- **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector.
- **Accuracy**: Results may vary based on input length and quality.
"""
)
with gr.Accordion("Citations", open=False, elem_classes=["accordion"]):
gr.Markdown(
"""
```
@inproceedings{zhangs2024MMDMP,
title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy},
author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui},
booktitle = {International Conference on Learning Representations (ICLR)},
year={2024}
}
```
"""
)
app.launch()
|