File size: 5,676 Bytes
2172586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
from torch import nn
from collections import namedtuple
import math
from utils import DEVICE
from pytorch_transformers.modeling_bert import (
    BertEncoder,
    BertPreTrainedModel,
    BertConfig,
)


class GeLU(nn.Module):
    """Implementation of the gelu activation function.
    For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
    0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    Also see https://arxiv.org/abs/1606.08415
    """

    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


class BertLayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12):
        """Construct a layernorm module in the TF style (epsilon inside the square root)."""
        super(BertLayerNorm, self).__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.bias = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = eps

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.weight * x + self.bias


class mlp_meta(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(config.hid_dim, config.hid_dim),
            GeLU(),
            BertLayerNorm(config.hid_dim, eps=1e-12),
            nn.Dropout(config.dropout),
        )

    def forward(self, x):
        return self.mlp(x)


class Bert_Transformer_Layer(BertPreTrainedModel):
    def __init__(self, fusion_config):
        super().__init__(BertConfig(**fusion_config))
        bertconfig_fusion = BertConfig(**fusion_config)
        self.encoder = BertEncoder(bertconfig_fusion)
        self.init_weights()

    def forward(self, input, mask=None):
        """
        input:(bs, 4, dim)
        """
        batch, feats, dim = input.size()
        if mask is not None:
            mask_ = torch.ones(size=(batch, feats), device=mask.device)
            mask_[:, 1:] = mask
            mask_ = torch.bmm(
                mask_.view(batch, 1, -1).transpose(1, 2), mask_.view(batch, 1, -1)
            )
            mask_ = mask_.unsqueeze(1)

        else:
            mask = torch.Tensor([1.0]).to(input.device)
            mask_ = mask.repeat(batch, 1, feats, feats)

        extend_mask = (1 - mask_) * -10000
        assert not extend_mask.requires_grad
        head_mask = [None] * self.config.num_hidden_layers

        enc_output = self.encoder(input, extend_mask, head_mask=head_mask)
        output = enc_output[0]
        all_attention = enc_output[1]

        return output, all_attention


class mmdPreModel(nn.Module):
    def __init__(
        self,
        config,
        num_mlp=0,
        transformer_flag=False,
        num_hidden_layers=1,
        mlp_flag=True,
    ):
        super(mmdPreModel, self).__init__()
        self.num_mlp = num_mlp
        self.transformer_flag = transformer_flag
        self.mlp_flag = mlp_flag
        token_num = config.token_num
        self.mlp = nn.Sequential(
            nn.Linear(config.in_dim, config.hid_dim),
            GeLU(),
            BertLayerNorm(config.hid_dim, eps=1e-12),
            nn.Dropout(config.dropout),
            # nn.Linear(config.hid_dim, config.out_dim),
        )
        self.fusion_config = {
            "hidden_size": config.in_dim,
            "num_hidden_layers": num_hidden_layers,
            "num_attention_heads": 4,
            "output_attentions": True,
        }
        if self.num_mlp > 0:
            self.mlp2 = nn.ModuleList([mlp_meta(config) for _ in range(self.num_mlp)])
        if self.transformer_flag:
            self.transformer = Bert_Transformer_Layer(self.fusion_config)
        self.feature = nn.Linear(config.hid_dim * token_num, config.out_dim)

    def forward(self, features):
        """
        input: [batch, token_num, hidden_size], output: [batch, token_num * config.out_dim]
        """

        if self.transformer_flag:
            features, _ = self.transformer(features)
        if self.mlp_flag:
            features = self.mlp(features)

        if self.num_mlp > 0:
            # features = self.mlp2(features)
            for _ in range(1):
                for mlp in self.mlp2:
                    features = mlp(features)

        features = self.feature(features.view(features.shape[0], -1))
        return features  # features.view(features.shape[0], -1)


class NetLoader:
    def __init__(self):
        token_num, hidden_size = 100, 768
        Config = namedtuple(
            "Config", ["in_dim", "hid_dim", "dropout", "out_dim", "token_num"]
        )
        config = Config(
            in_dim=hidden_size,
            token_num=token_num,
            hid_dim=512,
            dropout=0.2,
            out_dim=300,
        )
        self.config = config
        self.net = mmdPreModel(
            config=config, num_mlp=0, transformer_flag=True, num_hidden_layers=1
        )
        checkpoint_filename = "./net.pt"
        checkpoint = torch.load(checkpoint_filename, map_location=DEVICE)
        self.net.load_state_dict(checkpoint["net"])
        self.sigma, self.sigma0_u, self.ep = (
            checkpoint["sigma"],
            checkpoint["sigma0_u"],
            checkpoint["ep"],
        )
        self.net = self.net.to(DEVICE)
        self.sigma, self.sigma0_u, self.ep = (
            self.sigma.to(DEVICE),
            self.sigma0_u.to(DEVICE),
            self.ep.to(DEVICE),
        )


net = NetLoader()