import random import math import numpy as np import librosa import torchaudio def load_wav_arbitrary_position_mono(filename, sample_rate, seq_duration): # mono # seq_duration[second] length = torchaudio.info(filename).num_frames read_length = librosa.time_to_samples(seq_duration, sr=sample_rate) if length > read_length: random_start = random.randint(0, int(length - read_length - 1)) / sample_rate X, sr = librosa.load( filename, sr=None, offset=random_start, duration=seq_duration ) else: random_start = 0 total_pad_length = read_length - length X, sr = librosa.load(filename, sr=None, offset=0, duration=seq_duration) pad_left = random.randint(0, total_pad_length) X = np.pad(X, (pad_left, total_pad_length - pad_left)) return X def load_wav_specific_position_mono( filename, sample_rate, seq_duration, start_position ): # mono # seq_duration[second] # start_position[second] length = torchaudio.info(filename).num_frames read_length = librosa.time_to_samples(seq_duration, sr=sample_rate) start_pos_sec = max( start_position, 0 ) # if start_position is minus, then start from 0. start_pos_sample = librosa.time_to_samples(start_pos_sec, sr=sample_rate) if ( length <= start_pos_sample ): # if start position exceeds audio length, then start from 0. start_pos_sec = 0 start_pos_sample = 0 X, sr = librosa.load(filename, sr=None, offset=start_pos_sec, duration=seq_duration) if length < start_pos_sample + read_length: X = np.pad(X, (0, (start_pos_sample + read_length) - length)) return X # load wav file from arbitrary positions of 16bit stereo wav file def load_wav_arbitrary_position_stereo( filename, sample_rate, seq_duration, return_pos=False ): # stereo # seq_duration[second] length = torchaudio.info(filename).num_frames read_length = librosa.time_to_samples(seq_duration, sr=sample_rate) random_start_sample = random.randint( 0, int(length - math.ceil(seq_duration * sample_rate) - 1) ) random_start_sec = librosa.samples_to_time(random_start_sample, sr=sample_rate) X, sr = librosa.load( filename, sr=None, mono=False, offset=random_start_sec, duration=seq_duration ) if length < random_start_sample + read_length: X = np.pad(X, ((0, 0), (0, (random_start_sample + read_length) - length))) if return_pos: return X, random_start_sec else: return X def load_wav_specific_position_stereo( filename, sample_rate, seq_duration, start_position ): # stereo # seq_duration[second] # start_position[second] length = torchaudio.info(filename).num_frames read_length = librosa.time_to_samples(seq_duration, sr=sample_rate) start_pos_sec = max( start_position, 0 ) # if start_position is minus, then start from 0. start_pos_sample = librosa.time_to_samples(start_pos_sec, sr=sample_rate) if ( length <= start_pos_sample ): # if start position exceeds audio length, then start from 0. start_pos_sec = 0 start_pos_sample = 0 X, sr = librosa.load( filename, sr=None, mono=False, offset=start_pos_sec, duration=seq_duration ) if length < start_pos_sample + read_length: X = np.pad(X, ((0, 0), (0, (start_pos_sample + read_length) - length))) return X