# For De-limit task, Conv-TasNet. # si_sdr loss # # ozone_train_fixed is about 6.36 hours # 300,000 segments is about 333.33 hours # ratio should be about 0.019 wandb_params: use_wandb: true entity: null # your wandb id project: delimit # your wandb project rerun_id: null # use when you rerun wandb. sweep: false sys_params: nb_workers: 4 seed: 777 n_nodes: 1 port: null rank: 0 task_params: target: all # choices=["all"] train: true dataset: delimit # choices=["musdb", "delimit"] dir_params: root: /path/to/musdb18hq output_directory: /path/to/results exp_name: convtasnet_6_s # you MUST specify this resume: null # "path of checkpoint folder" continual_train: false # when we want to use a pre-trained model but not want to use lr_scheduler history. delimit_valid_root: null delimit_valid_L_root: null ozone_root: /path/to/musdb-XL-train # you have to specify data_params.use_fixed hyperparams: batch_size: 8 # with 1 gpus (we used 2080ti 11GB) epochs: 200 optimizer: adamw weight_decay: 0.01 lr: 0.00003 lr_decay_gamma: 0.5 lr_decay_patience: 15 patience: 50 lr_scheduler: step_lr gradient_clip: 5.0 ema: false data_params: nfft: 4096 nhop: 1024 nb_channels: 2 sample_rate: 44100 seq_dur: 4.0 singleset_num_frames: null samples_per_track: 128 # "Number of samples per track to use for training." limitaug_method: ozone limitaug_mode: null limitaug_custom_target_lufs: null limitaug_custom_target_lufs_std: null target_loudnorm_lufs: -14.0 random_mix: true target_limitaug_mode: null target_limitaug_custom_target_lufs: null target_limitaug_custom_target_lufs_std: null custom_limiter_attack_range: null custom_limiter_release_range: null use_fixed: 0.019 # range 0.0 ~ 1.0 => 1.0 will use fixed Ozoned_mixture training examples only. model_loss_params: architecture: conv_tasnet_mask_on_output # Sample-wise Gain Inversion (SGI) train_loss_func: [si_sdr] train_loss_scales: [1.] valid_loss_func: [si_sdr] valid_loss_scales: [1.] conv_tasnet_params: encoder_activation: relu n_filters: 512 kernel_size: 128 # about 3ms in 44100Hz stride: 64 n_blocks: 5 n_repeats: 2 bn_chan: 128 hid_chan: 512 skip_chan: 128 # conv_kernel_size: # norm_type: mask_act: relu # causal: decoder_activation: sigmoid