# Dataloader based on https://github.com/jeonchangbin49/LimitAug import os from glob import glob import random from typing import Optional, Callable import numpy as np import torch import librosa from torch.utils.data import Dataset import pyloudnorm as pyln from pedalboard import Pedalboard, Limiter, Gain, Compressor, Clipping from utils import load_wav_arbitrary_position_stereo, db2linear # based on https://github.com/sigsep/open-unmix-pytorch def aug_from_str(list_of_function_names: list): if list_of_function_names: return Compose([globals()["_augment_" + aug] for aug in list_of_function_names]) else: return lambda audio: audio class Compose(object): """Composes several augmentation transforms. Args: augmentations: list of augmentations to compose. """ def __init__(self, transforms): self.transforms = transforms def __call__(self, audio: torch.Tensor) -> torch.Tensor: for t in self.transforms: audio = t(audio) return audio # numpy based augmentation # based on https://github.com/sigsep/open-unmix-pytorch def _augment_gain(audio, low=0.25, high=1.25): """Applies a random gain between `low` and `high`""" g = low + random.random() * (high - low) return audio * g def _augment_channelswap(audio): """Swap channels of stereo signals with a probability of p=0.5""" if audio.shape[0] == 2 and random.random() < 0.5: return np.flip(audio, axis=0) # axis=0 must be given else: return audio # Linear gain increasing implementation for Method (1) def apply_linear_gain_increase(mixture, target, board, meter, samplerate, target_lufs): mixture, target = mixture.T, target.T loudness = meter.integrated_loudness(mixture) if np.isinf(loudness): augmented_gain = 0.0 board[0].gain_db = augmented_gain else: augmented_gain = target_lufs - loudness board[0].gain_db = augmented_gain mixture = board(mixture.T, samplerate) target = board(target.T, samplerate) return mixture, target # LimitAug implementation for Method (2) and # implementation of LimitAug then Loudness normalization for Method (4) def apply_limitaug( audio, board, meter, samplerate, target_lufs, target_loudnorm_lufs=None, loudness=None, ): audio = audio.T if loudness is None: loudness = meter.integrated_loudness(audio) if np.isinf(loudness): augmented_gain = 0.0 board[0].gain_db = augmented_gain else: augmented_gain = target_lufs - loudness board[0].gain_db = augmented_gain audio = board(audio.T, samplerate) if target_loudnorm_lufs: after_loudness = meter.integrated_loudness(audio.T) if np.isinf(after_loudness): pass else: target_gain = target_loudnorm_lufs - after_loudness audio = audio * db2linear(target_gain) return audio, loudness """ This dataloader implementation is based on https://github.com/sigsep/open-unmix-pytorch """ class MusdbTrainDataset(Dataset): def __init__( self, target: str = "vocals", root: str = None, seq_duration: Optional[float] = 6.0, samples_per_track: int = 64, source_augmentations: Optional[Callable] = lambda audio: audio, sample_rate: int = 44100, seed: int = 42, limitaug_method: str = "limitaug_then_loudnorm", limitaug_mode: str = "normal_L", limitaug_custom_target_lufs: float = None, limitaug_custom_target_lufs_std: float = None, target_loudnorm_lufs: float = -14.0, custom_limiter_attack_range: list = [2.0, 2.0], custom_limiter_release_range: list = [200.0, 200.0], *args, **kwargs, ) -> None: """ Parameters ---------- limitaug_method : str choose from ["linear_gain_increase", "limitaug", "limitaug_then_loudnorm", "only_loudnorm"] limitaug_mode : str choose from ["uniform", "normal", "normal_L", "normal_XL", "normal_short_term", "normal_L_short_term", "normal_XL_short_term", "custom"] limitaug_custom_target_lufs : float valid only when limitaug_mode == "custom" limitaug_custom_target_lufs_std : float also valid only when limitaug_mode == "custom target_loudnorm_lufs : float valid only when limitaug_method == 'limitaug_then_loudnorm' or 'only_loudnorm' default is -14. To the best of my knowledge, Spotify and Youtube music is using -14 as a reference loudness normalization level. No special reason for the choice of -14 as target_loudnorm_lufs. target : str target name of the source to be separated, defaults to ``vocals``. root : str root path of MUSDB seq_duration : float training is performed in chunks of ``seq_duration`` (in seconds, defaults to ``None`` which loads the full audio track samples_per_track : int sets the number of samples, yielded from each track per epoch. Defaults to 64 source_augmentations : list[callables] provide list of augmentation function that take a multi-channel audio file of shape (src, samples) as input and output. Defaults to no-augmentations (input = output) seed : int control randomness of dataset iterations args, kwargs : additional keyword arguments used to add further control for the musdb dataset initialization function. """ self.seed = seed random.seed(seed) self.seq_duration = seq_duration self.target = target self.samples_per_track = samples_per_track self.source_augmentations = source_augmentations self.sample_rate = sample_rate self.root = root self.sources = ["vocals", "bass", "drums", "other"] self.train_list = glob(f"{self.root}/train/*") self.valid_list = [ "ANiMAL - Rockshow", "Actions - One Minute Smile", "Alexander Ross - Goodbye Bolero", "Clara Berry And Wooldog - Waltz For My Victims", "Fergessen - Nos Palpitants", "James May - On The Line", "Johnny Lokke - Promises & Lies", "Leaf - Summerghost", "Meaxic - Take A Step", "Patrick Talbot - A Reason To Leave", "Skelpolu - Human Mistakes", "Traffic Experiment - Sirens", "Triviul - Angelsaint", "Young Griffo - Pennies", ] self.train_list = [ x for x in self.train_list if os.path.basename(x) not in self.valid_list ] # limitaug related self.limitaug_method = limitaug_method self.limitaug_mode = limitaug_mode self.limitaug_custom_target_lufs = limitaug_custom_target_lufs self.limitaug_custom_target_lufs_std = limitaug_custom_target_lufs_std self.target_loudnorm_lufs = target_loudnorm_lufs self.meter = pyln.Meter(self.sample_rate) # Method (1) in our paper's Results section and Table 5 if self.limitaug_method == "linear_gain_increase": print("using linear gain increasing!") self.board = Pedalboard([Gain(gain_db=0.0)]) # Method (2) in our paper's Results section and Table 5 elif self.limitaug_method == "limitaug": print("using limitaug!") self.board = Pedalboard( [Gain(gain_db=0.0), Limiter(threshold_db=0.0, release_ms=100.0)] ) # Method (3) in our paper's Results section and Table 5 elif self.limitaug_method == "only_loudnorm": print("using only loudness normalized inputs") # Method (4) in our paper's Results section and Table 5 elif self.limitaug_method == "limitaug_then_loudnorm": print("using limitaug then loudness normalize!") self.board = Pedalboard( [Gain(gain_db=0.0), Limiter(threshold_db=0.0, release_ms=100.0)] ) elif self.limitaug_method == "custom_limiter_limitaug": print("using Custom limiter limitaug!") self.custom_limiter_attack_range = custom_limiter_attack_range self.custom_limiter_release_range = custom_limiter_release_range self.board = Pedalboard( [ Gain(gain_db=0.0), Compressor( threshold_db=-10.0, ratio=4.0, attack_ms=2.0, release_ms=200.0 ), # attack_ms and release_ms will be changed later. Compressor( threshold_db=0.0, ratio=1000.0, attack_ms=0.001, release_ms=100.0, ), Gain(gain_db=3.75), Clipping(threshold_db=0.0), ] ) # This implementation is the same as JUCE Limiter. # However, we want the first compressor to have a variable attack and release time. # Therefore, we use the Custom Limiter instead of the JUCE Limiter. self.limitaug_mode_statistics = { "normal": [ -15.954, 1.264, ], # -15.954 is mean LUFS of musdb-hq and 1.264 is standard deviation "normal_L": [ -10.887, 1.191, ], # -10.887 is mean LUFS of musdb-L and 1.191 is standard deviation "normal_XL": [ -8.608, 1.165, ], # -8.608 is mean LUFS of musdb-L and 1.165 is standard deviation "normal_short_term": [ -17.317, 5.036, ], # In our experiments, short-term statistics were not helpful. "normal_L_short_term": [-12.303, 5.233], "normal_XL_short_term": [-9.988, 5.518], "custom": [limitaug_custom_target_lufs, limitaug_custom_target_lufs_std], } def sample_target_lufs(self): if ( self.limitaug_mode == "uniform" ): # if limitaug_mode is uniform, then choose target_lufs from uniform distribution target_lufs = random.uniform(-20, -5) else: # else, choose target_lufs from gaussian distribution target_lufs = random.gauss( self.limitaug_mode_statistics[self.limitaug_mode][0], self.limitaug_mode_statistics[self.limitaug_mode][1], ) return target_lufs def get_limitaug_results(self, mixture, target): # Apply linear gain increasing (Method (1)) if self.limitaug_method == "linear_gain_increase": target_lufs = self.sample_target_lufs() mixture, target = apply_linear_gain_increase( mixture, target, self.board, self.meter, self.sample_rate, target_lufs=target_lufs, ) # Apply LimitAug (Method (2)) elif self.limitaug_method == "limitaug": self.board[1].release_ms = random.uniform(30.0, 200.0) mixture_orig = mixture.copy() target_lufs = self.sample_target_lufs() mixture, _ = apply_limitaug( mixture, self.board, self.meter, self.sample_rate, target_lufs=target_lufs, ) print("mixture shape:", mixture.shape) print("target shape:", target.shape) target *= mixture / (mixture_orig + 1e-8) # Apply only loudness normalization (Method(3)) elif self.limitaug_method == "only_loudnorm": mixture_loudness = self.meter.integrated_loudness(mixture.T) if np.isinf( mixture_loudness ): # if the source is silence, then mixture_loudness is -inf. pass else: augmented_gain = ( self.target_loudnorm_lufs - mixture_loudness ) # default target_loudnorm_lufs is -14. mixture = mixture * db2linear(augmented_gain) target = target * db2linear(augmented_gain) # Apply LimitAug then loudness normalization (Method (4)) elif self.limitaug_method == "limitaug_then_loudnorm": self.board[1].release_ms = random.uniform(30.0, 200.0) mixture_orig = mixture.copy() target_lufs = self.sample_target_lufs() mixture, _ = apply_limitaug( mixture, self.board, self.meter, self.sample_rate, target_lufs=target_lufs, target_loudnorm_lufs=self.target_loudnorm_lufs, ) target *= mixture / (mixture_orig + 1e-8) # Apply LimitAug using Custom Limiter elif self.limitaug_method == "custom_limiter_limitaug": # Change attack time of First compressor of the Limiter self.board[1].attack_ms = random.uniform( self.custom_limiter_attack_range[0], self.custom_limiter_attack_range[1] ) # Change release time of First compressor of the Limiter self.board[1].release_ms = random.uniform( self.custom_limiter_release_range[0], self.custom_limiter_release_range[1], ) # Change release time of Second compressor of the Limiter self.board[2].release_ms = random.uniform(30.0, 200.0) mixture_orig = mixture.copy() target_lufs = self.sample_target_lufs() mixture, _ = apply_limitaug( mixture, self.board, self.meter, self.sample_rate, target_lufs=target_lufs, target_loudnorm_lufs=self.target_loudnorm_lufs, ) target *= mixture / (mixture_orig + 1e-8) return mixture, target def __getitem__(self, index): audio_sources = [] target_ind = None for k, source in enumerate(self.sources): # memorize index of target source if source == self.target: # if source is 'vocals' target_ind = k track_path = self.train_list[ index // self.samples_per_track ] # we want to use # training samples per each track. audio_path = f"{track_path}/{source}.wav" audio = load_wav_arbitrary_position_stereo( audio_path, self.sample_rate, self.seq_duration ) else: track_path = random.choice(self.train_list) audio_path = f"{track_path}/{source}.wav" audio = load_wav_arbitrary_position_stereo( audio_path, self.sample_rate, self.seq_duration ) audio = self.source_augmentations(audio) audio_sources.append(audio) stems = np.stack(audio_sources, axis=0) # # apply linear mix over source index=0 x = stems.sum(0) # get the target stem y = stems[target_ind] # Apply the limitaug, x, y = self.get_limitaug_results(x, y) x = torch.as_tensor(x, dtype=torch.float32) y = torch.as_tensor(y, dtype=torch.float32) return x, y def __len__(self): return len(self.train_list) * self.samples_per_track class MusdbValidDataset(Dataset): def __init__( self, target: str = "vocals", root: str = None, *args, **kwargs, ) -> None: """MUSDB18 torch.data.Dataset that samples from the MUSDB tracks using track and excerpts with replacement. Parameters ---------- target : str target name of the source to be separated, defaults to ``vocals``. root : str root path of MUSDB18HQ dataset, defaults to ``None``. args, kwargs : additional keyword arguments used to add further control for the musdb dataset initialization function. """ self.target = target self.sample_rate = 44100.0 # musdb is fixed sample rate self.root = root self.sources = ["vocals", "bass", "drums", "other"] self.train_list = glob(f"{self.root}/train/*") self.valid_list = [ "ANiMAL - Rockshow", "Actions - One Minute Smile", "Alexander Ross - Goodbye Bolero", "Clara Berry And Wooldog - Waltz For My Victims", "Fergessen - Nos Palpitants", "James May - On The Line", "Johnny Lokke - Promises & Lies", "Leaf - Summerghost", "Meaxic - Take A Step", "Patrick Talbot - A Reason To Leave", "Skelpolu - Human Mistakes", "Traffic Experiment - Sirens", "Triviul - Angelsaint", "Young Griffo - Pennies", ] self.valid_list = [ x for x in self.train_list if os.path.basename(x) in self.valid_list ] def __getitem__(self, index): audio_sources = [] target_ind = None for k, source in enumerate(self.sources): # memorize index of target source if source == self.target: # if source is 'vocals' target_ind = k track_path = self.valid_list[index] song_name = os.path.basename(track_path) audio_path = f"{track_path}/{source}.wav" # audio = utils.load_wav_stereo(audio_path, self.sample_rate) audio = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0] else: track_path = self.valid_list[index] song_name = os.path.basename(track_path) audio_path = f"{track_path}/{source}.wav" # audio = utils.load_wav_stereo(audio_path, self.sample_rate) audio = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0] audio = torch.as_tensor(audio, dtype=torch.float32) audio_sources.append(audio) stems = torch.stack(audio_sources, dim=0) # # apply linear mix over source index=0 x = stems.sum(0) # get the target stem y = stems[target_ind] return x, y, song_name def __len__(self): return len(self.valid_list) # If you want to check the LUFS values of training examples, run this. if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description="Make musdb-L and musdb-XL dataset from its ratio data" ) parser.add_argument( "--musdb_root", type=str, default="/path/to/musdb", help="root path of musdb-hq dataset", ) parser.add_argument( "--limitaug_method", type=str, default="limitaug", choices=[ "linear_gain_increase", "limitaug", "limitaug_then_loudnorm", "only_loudnorm", None, ], help="choose limitaug method", ) parser.add_argument( "--limitaug_mode", type=str, default="normal_L", choices=[ "uniform", "normal", "normal_L", "normal_XL", "normal_short_term", "normal_L_short_term", "normal_XL_short_term", "custom", ], help="if you use LimitAug, what lufs distribution to target", ) parser.add_argument( "--limitaug_custom_target_lufs", type=float, default=None, help="if limitaug_mode is custom, set custom target lufs for LimitAug", ) args, _ = parser.parse_known_args() source_augmentations_ = aug_from_str(["gain", "channelswap"]) train_dataset = MusdbTrainDataset( target="vocals", root=args.musdb_root, seq_duration=6.0, source_augmentations=source_augmentations_, limitaug_method=args.limitaug_method, limitaug_mode=args.limitaug_mode, limitaug_custom_target_lufs=args.limitaug_custom_target_lufs, ) dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=1, shuffle=True, num_workers=4, pin_memory=True, drop_last=False, ) meter = pyln.Meter(44100) for i in range(5): for x, y in dataloader: loudness = meter.integrated_loudness(x[0].numpy().T) print(f"mixture loudness : {loudness} LUFS")