De-limiter / add.py
jeonchangbin49's picture
first commit
a00b67a
raw
history blame
9.84 kB
import os
import json
import argparse
import numpy as np
import matplotlib.pyplot as plt
import torch
import tqdm
import librosa
import librosa.display
import soundfile as sf
import pyloudnorm as pyln
from dotmap import DotMap
import gradio as gr
from models import load_model_with_args
from separate_func import (
conv_tasnet_separate,
)
from utils import db2linear
tqdm.monitor_interval = 0
def separate_track_with_model(
args, model, device, track_audio, track_name, meter, augmented_gain
):
with torch.no_grad():
if (
args.model_loss_params.architecture == "conv_tasnet_mask_on_output"
or args.model_loss_params.architecture == "conv_tasnet"
):
estimates = conv_tasnet_separate(
args,
model,
device,
track_audio,
track_name,
meter=meter,
augmented_gain=augmented_gain,
)
return estimates
def main(input, mix_coefficient):
parser = argparse.ArgumentParser(description="model test.py")
parser.add_argument("--target", type=str, default="all")
parser.add_argument("--weight_directory", type=str, default="weight")
parser.add_argument("--output_directory", type=str, default="output")
parser.add_argument("--use_gpu", type=bool, default=True)
parser.add_argument("--save_name_as_target", type=bool, default=False)
parser.add_argument(
"--loudnorm_input_lufs",
type=float,
default=None,
help="If you want to use loudnorm for input",
)
parser.add_argument(
"--save_output_loudnorm",
type=float,
default=-14.0,
help="Save loudness normalized outputs or not. If you want to save, input target loudness",
)
parser.add_argument(
"--save_mixed_output",
type=float,
default=None,
help="Save original+delimited-estimation mixed output with a ratio of default 0.5 (orginal) and 1 - 0.5 (estimation)",
)
parser.add_argument(
"--save_16k_mono",
type=bool,
default=False,
help="Save 16k mono wav files for FAD evaluation.",
)
parser.add_argument(
"--save_histogram",
type=bool,
default=False,
help="Save histogram of the output. Only valid when the task is 'delimit'",
)
parser.add_argument(
"--use_singletrackset",
type=bool,
default=False,
help="Use SingleTrackSet if input data is too long.",
)
args, _ = parser.parse_known_args()
with open(f"{args.weight_directory}/{args.target}.json", "r") as f:
args_dict = json.load(f)
args_dict = DotMap(args_dict)
for key, value in args_dict["args"].items():
if key in list(vars(args).keys()):
pass
else:
setattr(args, key, value)
args.test_output_dir = f"{args.output_directory}"
os.makedirs(args.test_output_dir, exist_ok=True)
device = torch.device(
"cuda" if torch.cuda.is_available() and args.use_gpu else "cpu"
)
###################### Define Models ######################
our_model = load_model_with_args(args)
our_model = our_model.to(device)
target_model_path = f"{args.weight_directory}/{args.target}.pth"
checkpoint = torch.load(target_model_path, map_location=device)
our_model.load_state_dict(checkpoint)
our_model.eval()
meter = pyln.Meter(44100)
sr, track_audio = input
track_audio = track_audio.T
track_name = "gradio_demo"
orig_audio = track_audio.copy()
if sr != 44100:
raise ValueError("Sample rate should be 44100")
augmented_gain = None
if args.loudnorm_input_lufs: # If you want to use loud-normalized input
track_lufs = meter.integrated_loudness(track_audio.T)
augmented_gain = args.loudnorm_input_lufs - track_lufs
track_audio = track_audio * db2linear(augmented_gain, eps=0.0)
track_audio = (
torch.as_tensor(track_audio, dtype=torch.float32).unsqueeze(0).to(device)
)
estimates = separate_track_with_model(
args, our_model, device, track_audio, track_name, meter, augmented_gain
)
if args.save_mixed_output:
track_lufs = meter.integrated_loudness(orig_audio.T)
augmented_gain = args.save_output_loudnorm - track_lufs
orig_audio = orig_audio * db2linear(augmented_gain, eps=0.0)
mixed_output = orig_audio * args.save_mixed_output + estimates * (
1 - args.save_mixed_output
)
sf.write(
f"{args.test_output_dir}/{track_name}/{track_name}_mixed.wav",
mixed_output.T,
args.data_params.sample_rate,
)
return (
(sr, estimates.T),
(sr, orig_audio.T),
(sr, orig_audio.T * mix_coefficient + estimates.T * (1 - mix_coefficient)),
)
def parallel_mix(input, output, mix_coefficient):
sr = 44100
return sr, input[1] * mix_coefficient + output[1] * (1 - mix_coefficient)
def int16_to_float32(wav):
wav = np.frombuffer(wav, dtype=np.int16)
X = wav / 32768
return X
def waveform_plot(input, output, prl_mix_ouptut, figsize_x=20, figsize_y=9):
sr = 44100
fig, ax = plt.subplots(
nrows=3, sharex=True, sharey=True, figsize=(figsize_x, figsize_y)
)
librosa.display.waveshow(int16_to_float32(input[1]).T, sr=sr, ax=ax[0])
ax[0].set(title="Loudness Normalized Input")
ax[0].label_outer()
librosa.display.waveshow(int16_to_float32(output[1]).T, sr=sr, ax=ax[1])
ax[1].set(title="De-limiter Output")
ax[1].label_outer()
librosa.display.waveshow(int16_to_float32(prl_mix_ouptut[1]).T, sr=sr, ax=ax[2])
ax[2].set(title="Parallel Mix of the Input and its De-limiter Output")
ax[2].label_outer()
return fig
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Music De-limiter
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
A demo for "Music De-limiter via Sample-wise Gain Inversion" to appear in WASPAA 2023.
You can first upload a music (.wav or .mp3) file and then press "De-limit" button to apply the De-limiter. Since we use a CPU instead of a GPU, it may require a few minute.
Then, you can apply a Parallel Mix technique, which is a simple linear mixing technique of "loudness normalized input" and the "de-limiter output".
You can modify the mixing coefficient by yourself.
If the coefficient is 0.3 then the output will be the "loudness_normalized_input * 0.3 + de-limiter_output * 0.7"
</div>
"""
)
with gr.Row().style(mobile_collapse=False, equal_height=True):
with gr.Column():
with gr.Box():
input_audio = gr.Audio(source="upload", label="De-limiter Input")
btn = gr.Button("De-limit")
with gr.Column():
with gr.Box():
loud_norm_input = gr.Audio(label="Loudness Normalized Input (-14LUFS)")
with gr.Box():
output_audio = gr.Audio(label="De-limiter Output")
with gr.Box():
output_audio_parallel = gr.Audio(
label="Parallel Mix of the Input and its De-limiter Output"
)
slider = gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.5,
label="Parallel Mix Coefficient",
)
btn.click(
main,
inputs=[input_audio, slider],
outputs=[output_audio, loud_norm_input, output_audio_parallel],
)
slider.release(
parallel_mix,
inputs=[input_audio, output_audio, slider],
outputs=output_audio_parallel,
)
with gr.Row().style(mobile_collapse=False, equal_height=True):
with gr.Column():
with gr.Box():
plot = gr.Plot(label="Plots")
btn2 = gr.Button("Show Plots")
slider_plot_x = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=20,
label="Plot X-axis size",
)
slider_plot_y = gr.Slider(
minimum=1,
maximum=30,
step=1,
value=9,
label="Plot Y-axis size",
)
btn2.click(
waveform_plot,
inputs=[
loud_norm_input,
output_audio,
output_audio_parallel,
slider_plot_x,
slider_plot_y,
],
outputs=plot,
)
slider.release(
waveform_plot,
inputs=[
loud_norm_input,
output_audio,
output_audio_parallel,
slider_plot_x,
slider_plot_y,
],
outputs=plot,
)
if __name__ == "__main__":
demo.launch(debug=True)