Spaces:
Running
Running
# For De-limit task, Conv-TasNet. | |
# si_sdr loss | |
# | |
# ozone_train_fixed is about 6.36 hours | |
# 300,000 segments is about 333.33 hours | |
# ratio should be about 0.019 | |
wandb_params: | |
use_wandb: true | |
entity: null # your wandb id | |
project: delimit # your wandb project | |
rerun_id: null # use when you rerun wandb. | |
sweep: false | |
sys_params: | |
nb_workers: 4 | |
seed: 777 | |
n_nodes: 1 | |
port: null | |
rank: 0 | |
task_params: | |
target: all # choices=["all"] | |
train: true | |
dataset: delimit # choices=["musdb", "delimit"] | |
dir_params: | |
root: /path/to/musdb18hq | |
output_directory: /path/to/results | |
exp_name: convtasnet_6_s # you MUST specify this | |
resume: null # "path of checkpoint folder" | |
continual_train: false # when we want to use a pre-trained model but not want to use lr_scheduler history. | |
delimit_valid_root: null | |
delimit_valid_L_root: null | |
ozone_root: /path/to/musdb-XL-train # you have to specify data_params.use_fixed | |
hyperparams: | |
batch_size: 8 # with 1 gpus (we used 2080ti 11GB) | |
epochs: 200 | |
optimizer: adamw | |
weight_decay: 0.01 | |
lr: 0.00003 | |
lr_decay_gamma: 0.5 | |
lr_decay_patience: 15 | |
patience: 50 | |
lr_scheduler: step_lr | |
gradient_clip: 5.0 | |
ema: false | |
data_params: | |
nfft: 4096 | |
nhop: 1024 | |
nb_channels: 2 | |
sample_rate: 44100 | |
seq_dur: 4.0 | |
singleset_num_frames: null | |
samples_per_track: 128 # "Number of samples per track to use for training." | |
limitaug_method: ozone | |
limitaug_mode: null | |
limitaug_custom_target_lufs: null | |
limitaug_custom_target_lufs_std: null | |
target_loudnorm_lufs: -14.0 | |
random_mix: true | |
target_limitaug_mode: null | |
target_limitaug_custom_target_lufs: null | |
target_limitaug_custom_target_lufs_std: null | |
custom_limiter_attack_range: null | |
custom_limiter_release_range: null | |
use_fixed: 0.019 # range 0.0 ~ 1.0 => 1.0 will use fixed Ozoned_mixture training examples only. | |
model_loss_params: | |
architecture: conv_tasnet_mask_on_output # Sample-wise Gain Inversion (SGI) | |
train_loss_func: [si_sdr] | |
train_loss_scales: [1.] | |
valid_loss_func: [si_sdr] | |
valid_loss_scales: [1.] | |
conv_tasnet_params: | |
encoder_activation: relu | |
n_filters: 512 | |
kernel_size: 128 # about 3ms in 44100Hz | |
stride: 64 | |
n_blocks: 5 | |
n_repeats: 2 | |
bn_chan: 128 | |
hid_chan: 512 | |
skip_chan: 128 | |
# conv_kernel_size: | |
# norm_type: | |
mask_act: relu | |
# causal: | |
decoder_activation: sigmoid | |