File size: 2,923 Bytes
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import math

from torch.optim.lr_scheduler import _LRScheduler


class CosineAnnealingWarmUpRestarts(_LRScheduler):
    def __init__(
        self, optimizer, T_0, T_mult=1, eta_max=0.1, T_up=0, gamma=1.0, last_epoch=-1
    ):
        if T_0 <= 0 or not isinstance(T_0, int):
            raise ValueError("Expected positive integer T_0, but got {}".format(T_0))
        if T_mult < 1 or not isinstance(T_mult, int):
            raise ValueError("Expected integer T_mult >= 1, but got {}".format(T_mult))
        if T_up < 0 or not isinstance(T_up, int):
            raise ValueError("Expected positive integer T_up, but got {}".format(T_up))
        self.T_0 = T_0
        self.T_mult = T_mult
        self.base_eta_max = eta_max
        self.eta_max = eta_max
        self.T_up = T_up
        self.T_i = T_0
        self.gamma = gamma
        self.cycle = 0
        self.T_cur = last_epoch
        super(CosineAnnealingWarmUpRestarts, self).__init__(optimizer, last_epoch)

    def get_lr(self):
        if self.T_cur == -1:
            return self.base_lrs
        elif self.T_cur < self.T_up:
            return [
                (self.eta_max - base_lr) * self.T_cur / self.T_up + base_lr
                for base_lr in self.base_lrs
            ]
        else:
            return [
                base_lr
                + (self.eta_max - base_lr)
                * (
                    1
                    + math.cos(
                        math.pi * (self.T_cur - self.T_up) / (self.T_i - self.T_up)
                    )
                )
                / 2
                for base_lr in self.base_lrs
            ]

    def step(self, epoch=None):
        if epoch is None:
            epoch = self.last_epoch + 1
            self.T_cur = self.T_cur + 1
            if self.T_cur >= self.T_i:
                self.cycle += 1
                self.T_cur = self.T_cur - self.T_i
                self.T_i = (self.T_i - self.T_up) * self.T_mult + self.T_up
        else:
            if epoch >= self.T_0:
                if self.T_mult == 1:
                    self.T_cur = epoch % self.T_0
                    self.cycle = epoch // self.T_0
                else:
                    n = int(
                        math.log(
                            (epoch / self.T_0 * (self.T_mult - 1) + 1), self.T_mult
                        )
                    )
                    self.cycle = n
                    self.T_cur = epoch - self.T_0 * (self.T_mult**n - 1) / (
                        self.T_mult - 1
                    )
                    self.T_i = self.T_0 * self.T_mult ** (n)
            else:
                self.T_i = self.T_0
                self.T_cur = epoch

        self.eta_max = self.base_eta_max * (self.gamma**self.cycle)
        self.last_epoch = math.floor(epoch)
        for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
            param_group["lr"] = lr