Spaces:
Running
Running
File size: 26,488 Bytes
a00b67a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
import time
import json
import torch
import torch.nn as nn
import wandb
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from asteroid.losses import (
pairwise_neg_sisdr,
PairwiseNegSDR,
)
from einops import rearrange, reduce
from ema_pytorch import EMA
from models import load_model_with_args
import utils
from dataloader import (
MusdbTrainDataset,
MusdbValidDataset,
DelimitTrainDataset,
DelimitValidDataset,
OzoneTrainDataset,
OzoneValidDataset,
aug_from_str,
SingleTrackSet,
)
class Solver(object):
def __init__(self):
pass
def set_gpu(self, args):
if args.wandb_params.use_wandb and args.gpu == 0:
if args.wandb_params.sweep:
wandb.init(
entity=args.wandb_params.entity,
project=args.wandb_params.project,
config=args,
resume=True
if args.dir_params.resume != None and args.gpu == 0
else False,
)
else:
wandb.init(
entity=args.wandb_params.entity,
project=args.wandb_params.project,
name=f"{args.dir_params.exp_name}",
config=args,
resume="must"
if args.dir_params.resume != None
and not args.dir_params.continual_train
else False,
id=args.wandb_params.rerun_id
if args.wandb_params.rerun_id
else None,
settings=wandb.Settings(start_method="fork"),
)
###################### Define Models ######################
self.model = load_model_with_args(args)
trainable_params = []
trainable_params = trainable_params + list(self.model.parameters())
if args.hyperparams.optimizer == "sgd":
print("Use SGD optimizer.")
self.optimizer = torch.optim.SGD(
params=trainable_params,
lr=args.hyperparams.lr,
momentum=0.9,
weight_decay=args.hyperparams.weight_decay,
)
elif args.hyperparams.optimizer == "adamw":
print("Use AdamW optimizer.")
self.optimizer = torch.optim.AdamW(
params=trainable_params,
lr=args.hyperparams.lr,
betas=(0.9, 0.999),
amsgrad=False,
weight_decay=args.hyperparams.weight_decay,
)
elif args.hyperparams.optimizer == "radam":
print("Use RAdam optimizer.")
self.optimizer = torch.optim.RAdam(
params=trainable_params,
lr=args.hyperparams.lr,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.hyperparams.weight_decay,
)
elif args.hyperparams.optimizer == "adam":
print("Use Adam optimizer.")
self.optimizer = torch.optim.Adam(
params=trainable_params,
lr=args.hyperparams.lr,
betas=(0.9, 0.999),
weight_decay=args.hyperparams.weight_decay,
)
else:
print("no optimizer loaded")
raise NotImplementedError
if args.hyperparams.lr_scheduler == "step_lr":
if args.model_loss_params.architecture == "umx":
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer,
mode="min",
factor=args.hyperparams.lr_decay_gamma,
patience=args.hyperparams.lr_decay_patience,
cooldown=10,
verbose=True,
)
else:
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer,
mode="min",
factor=args.hyperparams.lr_decay_gamma,
patience=args.hyperparams.lr_decay_patience,
cooldown=0,
min_lr=5e-5,
verbose=True,
)
elif args.hyperparams.lr_scheduler == "cos_warmup":
self.scheduler = utils.CosineAnnealingWarmUpRestarts(
self.optimizer,
T_0=40,
T_mult=1,
eta_max=args.hyperparams.lr,
T_up=10,
gamma=0.5,
)
torch.cuda.set_device(args.gpu)
self.model = self.model.to(f"cuda:{args.gpu}")
############################################################
# Define Losses
self.criterion = {}
self.criterion["l1"] = nn.L1Loss().to(args.gpu)
self.criterion["mse"] = nn.MSELoss().to(args.gpu)
self.criterion["si_sdr"] = pairwise_neg_sisdr.to(args.gpu)
self.criterion["snr"] = PairwiseNegSDR("snr").to(args.gpu)
self.criterion["bcewithlogits"] = nn.BCEWithLogitsLoss().to(args.gpu)
self.criterion["bce"] = nn.BCELoss().to(args.gpu)
self.criterion["kl"] = nn.KLDivLoss(log_target=True).to(args.gpu)
print("Loss functions we use in this training:")
print(args.model_loss_params.train_loss_func)
# Early stopping utils
self.es = utils.EarlyStopping(patience=args.hyperparams.patience)
self.stop = False
if args.wandb_params.use_wandb and args.gpu == 0:
wandb.watch(self.model, log="all")
self.start_epoch = 1
self.train_losses = []
self.valid_losses = []
self.train_times = []
self.best_epoch = 0
if args.dir_params.resume and not args.hyperparams.ema:
self.resume(args)
# Distribute models to machine
self.model = DDP(
self.model,
device_ids=[args.gpu],
output_device=args.gpu,
find_unused_parameters=True,
)
if args.hyperparams.ema:
self.model_ema = EMA(
self.model,
beta=0.999,
update_after_step=100,
update_every=10,
)
if args.resume and args.hyperparams.ema:
self.resume(args)
###################### Define data pipeline ######################
args.hyperparams.batch_size = int(
args.hyperparams.batch_size / args.ngpus_per_node
)
self.mp_context = torch.multiprocessing.get_context("fork")
if args.task_params.dataset == "musdb":
self.train_dataset = MusdbTrainDataset(
target=args.task_params.target,
root=args.dir_params.root,
seq_duration=args.data_params.seq_dur,
samples_per_track=args.data_params.samples_per_track,
source_augmentations=aug_from_str(
["gain", "channelswap"],
),
sample_rate=args.data_params.sample_rate,
seed=args.sys_params.seed,
limitaug_method=args.data_params.limitaug_method,
limitaug_mode=args.data_params.limitaug_mode,
limitaug_custom_target_lufs=args.data_params.limitaug_custom_target_lufs,
limitaug_custom_target_lufs_std=args.data_params.limitaug_custom_target_lufs_std,
target_loudnorm_lufs=args.data_params.target_loudnorm_lufs,
custom_limiter_attack_range=args.data_params.custom_limiter_attack_range,
custom_limiter_release_range=args.data_params.custom_limiter_release_range,
)
self.valid_dataset = MusdbValidDataset(
target=args.task_params.target, root=args.dir_params.root
)
elif args.task_params.dataset == "delimit":
if args.data_params.limitaug_method == "ozone":
self.train_dataset = OzoneTrainDataset(
target=args.task_params.target,
root=args.dir_params.root,
ozone_root=args.dir_params.ozone_root,
use_fixed=args.data_params.use_fixed,
seq_duration=args.data_params.seq_dur,
samples_per_track=args.data_params.samples_per_track,
source_augmentations=aug_from_str(
["gain", "channelswap"],
),
sample_rate=args.data_params.sample_rate,
seed=args.sys_params.seed,
limitaug_method=args.data_params.limitaug_method,
limitaug_mode=args.data_params.limitaug_mode,
limitaug_custom_target_lufs=args.data_params.limitaug_custom_target_lufs,
limitaug_custom_target_lufs_std=args.data_params.limitaug_custom_target_lufs_std,
target_loudnorm_lufs=args.data_params.target_loudnorm_lufs,
target_limitaug_mode=args.data_params.target_limitaug_mode,
target_limitaug_custom_target_lufs=args.data_params.target_limitaug_custom_target_lufs,
target_limitaug_custom_target_lufs_std=args.data_params.target_limitaug_custom_target_lufs_std,
custom_limiter_attack_range=args.data_params.custom_limiter_attack_range,
custom_limiter_release_range=args.data_params.custom_limiter_release_range,
)
self.valid_dataset = OzoneValidDataset(
target=args.task_params.target,
root=args.dir_params.root,
ozone_root=args.dir_params.ozone_root,
target_loudnorm_lufs=args.data_params.target_loudnorm_lufs,
)
else:
self.train_dataset = DelimitTrainDataset(
target=args.task_params.target,
root=args.dir_params.root,
seq_duration=args.data_params.seq_dur,
samples_per_track=args.data_params.samples_per_track,
source_augmentations=aug_from_str(
["gain", "channelswap"],
),
sample_rate=args.data_params.sample_rate,
seed=args.sys_params.seed,
limitaug_method=args.data_params.limitaug_method,
limitaug_mode=args.data_params.limitaug_mode,
limitaug_custom_target_lufs=args.data_params.limitaug_custom_target_lufs,
limitaug_custom_target_lufs_std=args.data_params.limitaug_custom_target_lufs_std,
target_loudnorm_lufs=args.data_params.target_loudnorm_lufs,
target_limitaug_mode=args.data_params.target_limitaug_mode,
target_limitaug_custom_target_lufs=args.data_params.target_limitaug_custom_target_lufs,
target_limitaug_custom_target_lufs_std=args.data_params.target_limitaug_custom_target_lufs_std,
custom_limiter_attack_range=args.data_params.custom_limiter_attack_range,
custom_limiter_release_range=args.data_params.custom_limiter_release_range,
)
self.valid_dataset = DelimitValidDataset(
target=args.task_params.target,
root=args.dir_params.root,
delimit_valid_root=args.dir_params.delimit_valid_root,
valid_target_lufs=args.data_params.valid_target_lufs,
target_loudnorm_lufs=args.data_params.target_loudnorm_lufs,
delimit_valid_L_root=args.dir_params.delimit_valid_L_root,
)
self.train_sampler = DistributedSampler(
self.train_dataset, shuffle=True, rank=args.gpu
)
self.train_loader = torch.utils.data.DataLoader(
self.train_dataset,
batch_size=args.hyperparams.batch_size,
shuffle=False,
num_workers=args.sys_params.nb_workers,
multiprocessing_context=self.mp_context,
pin_memory=True,
sampler=self.train_sampler,
drop_last=False,
)
self.valid_sampler = DistributedSampler(
self.valid_dataset, shuffle=False, rank=args.gpu
)
self.valid_loader = torch.utils.data.DataLoader(
self.valid_dataset,
batch_size=1,
shuffle=False,
num_workers=args.sys_params.nb_workers,
multiprocessing_context=self.mp_context,
pin_memory=False,
sampler=self.valid_sampler,
drop_last=False,
)
def train(self, args, epoch):
self.end = time.time()
self.model.train()
# get current learning rate
for param_group in self.optimizer.param_groups:
current_lr = param_group["lr"]
if (
args.sys_params.rank % args.ngpus_per_node == 0
): # when the last rank process is finished
print(f"Epoch {epoch}, Learning rate: {current_lr}")
losses = utils.AverageMeter()
loss_logger = {}
loss_logger["train/train loss"] = 0
# with torch.autograd.detect_anomaly(): # use this if you want to detect anomaly behavior while training.
for i, values in enumerate(self.train_loader):
mixture, clean, *train_vars = values
mixture = mixture.cuda(args.gpu, non_blocking=True)
clean = clean.cuda(args.gpu, non_blocking=True)
target = clean # target_shape = [batch_size, n_srcs, nb_channels (if stereo: 2), wave_length]
loss_input = {}
estimates, *estimates_vars = self.model(mixture)
# estimates = self.model(mixture)
# loss = []
dict_loss = {}
if args.task_params.dataset == "delimit":
estimates = estimates_vars[0]
for train_loss_idx, single_train_loss_func in enumerate(
args.model_loss_params.train_loss_func
):
if self.model.module.use_encoder_to_target:
target_spec = self.model.module.encoder(
rearrange(target, "b s c t -> (b s) c t")
)
target_spec = rearrange(
target_spec,
"(b s) c f t -> b s c f t",
s=args.task_params.bleeding_nsrcs,
)
loss_else = self.criterion[single_train_loss_func](
estimates,
target_spec
if self.model.module.use_encoder_to_target
else target,
)
dict_loss[single_train_loss_func] = (
loss_else.mean()
* args.model_loss_params.train_loss_scales[train_loss_idx]
)
loss = sum([value for key, value in dict_loss.items()])
############################################################
#################### 5. Back propagation ####################
loss.backward()
if args.hyperparams.gradient_clip:
nn.utils.clip_grad_norm_(
self.model.parameters(), max_norm=args.hyperparams.gradient_clip
)
losses.update(loss.item(), clean.size(0))
loss_logger["train/train loss"] = losses.avg
for key, value in dict_loss.items():
loss_logger[f"train/{key}"] = value.item()
self.optimizer.step()
self.model.zero_grad(
set_to_none=True
) # set_to_none=True is for memory saving
if args.hyperparams.ema:
self.model_ema.update()
############################################################
# ###################### 6. Plot ######################
if i % 30 == 0:
# loss print for multiple loss function
multiple_score = torch.Tensor(
[value for key, value in loss_logger.items()]
).to(args.gpu)
gathered_score_list = [
torch.ones_like(multiple_score)
for _ in range(dist.get_world_size())
]
dist.all_gather(gathered_score_list, multiple_score)
gathered_score = torch.mean(
torch.stack(gathered_score_list, dim=0), dim=0
)
if args.gpu == 0:
print(f"Epoch {epoch}, step {i} / {len(self.train_loader)}")
temp_loss_logger = {}
for index, (key, value) in enumerate(loss_logger.items()):
temp_key = key.replace("train/", "iter-wise/")
temp_loss_logger[temp_key] = round(
gathered_score[index].item(), 6
)
print(f"{key} : {round(gathered_score[index].item(), 6)}")
single_score = torch.Tensor([losses.avg]).to(args.gpu)
gathered_score_list = [
torch.ones_like(single_score) for _ in range(dist.get_world_size())
]
dist.all_gather(gathered_score_list, single_score)
gathered_score = torch.mean(torch.cat(gathered_score_list)).item()
if args.gpu == 0:
self.train_losses.append(gathered_score)
if args.wandb_params.use_wandb:
loss_logger["train/train loss"] = single_score
loss_logger["train/epoch"] = epoch
wandb.log(loss_logger)
############################################################
def multi_validate(self, args, epoch):
if args.gpu == 0:
print(f"Epoch {epoch} Validation session!")
losses = utils.AverageMeter()
loss_logger = {}
self.model.eval()
with torch.no_grad():
for i, values in enumerate(self.valid_loader, start=1):
mixture, clean, song_name, *valid_vars = values
mixture = mixture.cuda(args.gpu, non_blocking=True)
clean = clean.cuda(args.gpu, non_blocking=True)
target = clean
dict_loss = {}
if not args.data_params.singleset_num_frames:
if args.hyperparams.ema:
estimates, *estimates_vars = self.model_ema(mixture)
else:
estimates, *estimates_vars = self.model(mixture)
if args.task_params.dataset == "delimit":
estimates = estimates_vars[0]
estimates = estimates[..., : clean.size(-1)]
else: # use SingleTrackSet
db = SingleTrackSet(
mixture[0],
hop_length=args.data_params.nhop,
num_frame=args.data_params.singleset_num_frames,
target_name=args.task_params.target,
)
separated = []
for item in db:
if args.hyperparams.ema:
estimates, *estimates_vars = self.model_ema(
item.unsqueeze(0).to(args.gpu)
)
else:
estimates, *estimates_vars = self.model(
item.unsqueeze(0).to(args.gpu)
)
if args.task_params.dataset == "delimit":
estimates = estimates_vars[0]
separated.append(
estimates_vars[0][
..., db.trim_length : -db.trim_length
].clone()
)
estimates = torch.cat(separated, dim=-1)
estimates = estimates[..., : target.shape[-1]]
for valid_loss_idx, single_valid_loss_func in enumerate(
args.model_loss_params.valid_loss_func
):
loss_else = self.criterion[single_valid_loss_func](
estimates,
target,
)
dict_loss[single_valid_loss_func] = (
loss_else.mean()
* args.model_loss_params.valid_loss_scales[valid_loss_idx]
)
loss = sum([value for key, value in dict_loss.items()])
losses.update(loss.item(), clean.size(0))
list_sum_count = torch.Tensor([losses.sum, losses.count]).to(args.gpu)
list_gathered_sum_count = [
torch.ones_like(list_sum_count) for _ in range(dist.get_world_size())
]
dist.all_gather(list_gathered_sum_count, list_sum_count)
gathered_score = reduce(
torch.stack(list_gathered_sum_count), "s c -> c", "sum"
) # s: sum of losses.sum, c: sum of losses.count
gathered_score = (gathered_score[0] / gathered_score[1]).item()
loss_logger["valid/valid loss"] = gathered_score
for key, value in dict_loss.items():
loss_logger[f"valid/{key}"] = value.item()
if args.hyperparams.lr_scheduler == "step_lr":
self.scheduler.step(gathered_score)
elif args.hyperparams.lr_scheduler == "cos_warmup":
self.scheduler.step(epoch)
else:
self.scheduler.step(gathered_score)
if args.wandb_params.use_wandb and args.gpu == 0:
loss_logger["valid/epoch"] = epoch
wandb.log(loss_logger)
if args.gpu == 0:
self.valid_losses.append(gathered_score)
self.stop = self.es.step(gathered_score)
print(f"Epoch {epoch}, validation loss : {round(gathered_score, 6)}")
plt.plot(self.train_losses, label="train loss")
plt.plot(self.valid_losses, label="valid loss")
plt.legend(loc="upper right")
plt.savefig(f"{args.output}/loss_graph_{args.task_params.target}.png")
plt.close()
save_states = {
"epoch": epoch,
"state_dict": self.model.module.state_dict()
if not args.hyperparams.ema
else self.model_ema.state_dict(),
"best_loss": self.es.best,
"optimizer": self.optimizer.state_dict(),
"scheduler": self.scheduler.state_dict(),
}
utils.save_checkpoint(
save_states,
state_dict_only=gathered_score == self.es.best,
path=args.output,
target=args.task_params.target,
)
self.train_times.append(time.time() - self.end)
if gathered_score == self.es.best:
self.best_epoch = epoch
# save params
params = {
"epochs_trained": epoch,
"args": args.toDict(),
"best_loss": self.es.best,
"best_epoch": self.best_epoch,
"train_loss_history": self.train_losses,
"valid_loss_history": self.valid_losses,
"train_time_history": self.train_times,
"num_bad_epochs": self.es.num_bad_epochs,
}
with open(
f"{args.output}/{args.task_params.target}.json", "w"
) as outfile:
outfile.write(json.dumps(params, indent=4, sort_keys=True))
self.train_times.append(time.time() - self.end)
print(
f"Epoch {epoch} train completed. Took {round(self.train_times[-1], 3)} seconds"
)
def resume(self, args):
print(f"Resume checkpoint from: {args.dir_params.resume}:")
loc = f"cuda:{args.gpu}"
checkpoint_path = f"{args.dir_params.resume}/{args.task_params.target}"
with open(f"{checkpoint_path}.json", "r") as stream:
results = json.load(stream)
checkpoint = torch.load(f"{checkpoint_path}.chkpnt", map_location=loc)
if args.hyperparams.ema:
self.model_ema.load_state_dict(checkpoint["state_dict"])
else:
self.model.load_state_dict(checkpoint["state_dict"])
self.optimizer.load_state_dict(checkpoint["optimizer"])
if (
args.dir_params.continual_train
): # we want to use a pre-trained model but not want to use lr_scheduler history.
for param_group in self.optimizer.param_groups:
param_group["lr"] = args.hyperparams.lr
else:
self.scheduler.load_state_dict(checkpoint["scheduler"])
self.es.best = results["best_loss"]
self.es.num_bad_epochs = results["num_bad_epochs"]
self.start_epoch = results["epochs_trained"]
self.train_losses = results["train_loss_history"]
self.valid_losses = results["valid_loss_history"]
self.train_times = results["train_time_history"]
self.best_epoch = results["best_epoch"]
if args.sys_params.rank % args.ngpus_per_node == 0:
print(
f"=> loaded checkpoint {checkpoint_path} (epoch {results['epochs_trained']})"
)
def cal_loss(self, args, loss_input):
loss_dict = {}
for key, value in loss_input.items():
loss_dict[key] = self.criterion[key](*value)
return loss_dict
def cal_multiple_losses(self, args, dict_loss_name_input):
loss_dict = {}
for loss_name, loss_input in dict_loss_name_input.items():
loss_dict[loss_name] = self.cal_loss(args, loss_input)
return loss_dict
|