Spaces:
Running
Running
File size: 1,214 Bytes
a00b67a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import os
import json
from torch.utils.data import DataLoader
import soundfile as sf
import tqdm
from dataloader import DelimitValidDataset
def main():
# Parameters
data_path = "/path/to/musdb18hq"
save_path = "/path/to/musdb18hq_limited"
batch_size = 1
num_workers = 1
sr = 44100
# Dataset
dataset = DelimitValidDataset(root=data_path)
data_loader = DataLoader(
dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False
)
dict_valid_loudness = {}
# Preprocessing
for limited_audio, orig_audio, audio_name, loudness in tqdm.tqdm(data_loader):
audio_name = audio_name[0]
limited_audio = limited_audio[0].numpy()
loudness = float(loudness[0].numpy())
dict_valid_loudness[audio_name] = loudness
# Save audio
os.makedirs(os.path.join(save_path, "valid"), exist_ok=True)
audio_path = os.path.join(save_path, "valid", audio_name)
sf.write(f"{audio_path}.wav", limited_audio.T, sr)
# write json write code
with open(os.path.join(save_path, "valid_loudness.json"), "w") as f:
json.dump(dict_valid_loudness, f, indent=4)
if __name__ == "__main__":
main()
|