File size: 9,104 Bytes
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
import torch.nn as nn
from asteroid.models.base_models import (
    BaseEncoderMaskerDecoder,
    _unsqueeze_to_3d,
    _shape_reconstructed,
)
from asteroid.utils.torch_utils import pad_x_to_y, jitable_shape
from einops import rearrange


class BaseEncoderMaskerDecoderWithConfigs(BaseEncoderMaskerDecoder):
    def __init__(self, encoder, masker, decoder, encoder_activation=None, **kwargs):
        super().__init__(encoder, masker, decoder, encoder_activation)
        self.use_encoder = kwargs.get("use_encoder", True)
        self.apply_mask = kwargs.get("apply_mask", True)
        self.use_decoder = kwargs.get("use_decoder", True)

    def forward(self, wav):
        """
        Enc/Mask/Dec model forward with some additional options.
        Some of the models we use, like TFC-TDF-UNet, have no masker.
        In UMX or X-UMX, they already use masking in their model implementation.
        Since we do not want to manipulate the model codes, we use this wrapper.

        Args:
            wav (torch.Tensor): waveform tensor. 1D, 2D or 3D tensor, time last.

        Returns:
            torch.Tensor, of shape (batch, n_src, time) or (n_src, time).
        """
        # Remember shape to shape reconstruction, cast to Tensor for torchscript
        shape = jitable_shape(wav)
        # Reshape to (batch, n_mix, time)
        wav = _unsqueeze_to_3d(wav)

        # Real forward
        if self.use_encoder:
            tf_rep = self.forward_encoder(wav)
        else:
            tf_rep = wav

        est_masks = self.forward_masker(tf_rep)

        if self.apply_mask:
            masked_tf_rep = self.apply_masks(tf_rep, est_masks)
        else:  # model already used masking
            masked_tf_rep = est_masks

        if self.use_decoder:
            decoded = self.forward_decoder(masked_tf_rep)
            reconstructed = pad_x_to_y(decoded, wav)

            return masked_tf_rep, _shape_reconstructed(reconstructed, shape)

        else:  # In UMX or X-UMX, decoder is not used
            decoded = masked_tf_rep

            return decoded


class BaseEncoderMaskerDecoder_mixture_consistency(BaseEncoderMaskerDecoder):
    def __init__(self, encoder, masker, decoder, encoder_activation=None):
        super().__init__(encoder, masker, decoder, encoder_activation)

    def forward(self, wav):
        """Enc/Mask/Dec model forward with mixture consistent output

        References:
        [1] : Wisdom, Scott, et al. "Differentiable consistency constraints for improved deep speech enhancement." ICASSP 2019.
        [2] : Wisdom, Scott, et al. "Unsupervised sound separation using mixture invariant training." NeurIPS 2020.

        Args:
            wav (torch.Tensor): waveform tensor. 1D, 2D or 3D tensor, time last.

        Returns:
            torch.Tensor, of shape (batch, n_src, time) or (n_src, time).
        """
        # Remember shape to shape reconstruction, cast to Tensor for torchscript
        shape = jitable_shape(wav)
        # Reshape to (batch, n_mix, time)
        wav = _unsqueeze_to_3d(wav)

        # Real forward
        tf_rep = self.forward_encoder(wav)
        est_masks = self.forward_masker(tf_rep)
        masked_tf_rep = self.apply_masks(tf_rep, est_masks)
        decoded = self.forward_decoder(masked_tf_rep)

        reconstructed = _shape_reconstructed(pad_x_to_y(decoded, wav), shape)

        reconstructed = reconstructed + 1 / reconstructed.shape[1] * (
            wav - reconstructed.sum(dim=1, keepdim=True)
        )

        return reconstructed


class BaseEncoderMaskerDecoderWithConfigsMaskOnOutput(BaseEncoderMaskerDecoder):
    def __init__(self, encoder, masker, decoder, encoder_activation=None, **kwargs):
        super().__init__(encoder, masker, decoder, encoder_activation)
        self.use_encoder = kwargs.get("use_encoder", True)
        self.apply_mask = kwargs.get("apply_mask", True)
        self.use_decoder = kwargs.get("use_decoder", True)
        self.nb_channels = kwargs.get("nb_channels", 2)
        self.decoder_activation = kwargs.get("decoder_activation", "sigmoid")
        if self.decoder_activation == "sigmoid":
            self.act_after_dec = nn.Sigmoid()
        elif self.decoder_activation == "relu":
            self.act_after_dec = nn.ReLU()
        elif self.decoder_activation == "relu6":
            self.act_after_dec = nn.ReLU6()
        elif self.decoder_activation == "tanh":
            self.act_after_dec = nn.Tanh()
        elif self.decoder_activation == "none":
            self.act_after_dec = nn.Identity()
        else:
            self.act_after_dec = nn.Sigmoid()

    def forward(self, wav):
        """
        For the De-limit task, we will apply the mask on the output of the decoder.
        We want decoder to learn the sample-wise ratio of the sources.

        Args:
            wav (torch.Tensor): waveform tensor. 1D, 2D or 3D tensor, time last.

        Returns:
            torch.Tensor, of shape (batch, n_src, time) or (n_src, time).
        """
        # Remember shape to shape reconstruction, cast to Tensor for torchscript
        shape = jitable_shape(wav)
        # Reshape to (batch, n_mix, time)
        wav = _unsqueeze_to_3d(wav)  # (batch, n_channels, time)

        # Real forward
        if self.use_encoder:
            tf_rep = self.forward_encoder(wav)  # (batch, n_channels, freq, time)
        else:
            tf_rep = wav

        if self.nb_channels == 2:
            tf_rep = rearrange(
                tf_rep, "b c f t -> b (c f) t"
            )  # c == 2 when stereo input.
        est_masks = self.forward_masker(tf_rep)  # (batch, 1, freq, time)

        # we are going to apply the mask on the output of the decoder
        if self.use_decoder:
            if self.nb_channels == 2:
                est_masks = rearrange(est_masks, "b 1 f t -> b f t")
            est_masks_decoded = self.forward_decoder(est_masks)
            est_masks_decoded = pad_x_to_y(est_masks_decoded, wav)  # (batch, 1, time)
            est_masks_decoded = self.act_after_dec(
                est_masks_decoded
            )  # (batch, 1, time)
            decoded = wav * est_masks_decoded  # (batch, n_channels, time)

            return (
                est_masks_decoded,
                decoded,
            )

        else:
            decoded = est_masks

            return (decoded,)


class BaseEncoderMaskerDecoderWithConfigsMultiChannelAsteroid(BaseEncoderMaskerDecoder):
    def __init__(self, encoder, masker, decoder, encoder_activation=None, **kwargs):
        super().__init__(encoder, masker, decoder, encoder_activation)
        self.use_encoder = kwargs.get("use_encoder", True)
        self.apply_mask = kwargs.get("apply_mask", True)
        self.use_decoder = kwargs.get("use_decoder", True)
        self.nb_channels = kwargs.get("nb_channels", 2)
        self.decoder_activation = kwargs.get("decoder_activation", "none")
        if self.decoder_activation == "sigmoid":
            self.act_after_dec = nn.Sigmoid()
        elif self.decoder_activation == "relu":
            self.act_after_dec = nn.ReLU()
        elif self.decoder_activation == "relu6":
            self.act_after_dec = nn.ReLU6()
        elif self.decoder_activation == "tanh":
            self.act_after_dec = nn.Tanh()
        elif self.decoder_activation == "none":
            self.act_after_dec = nn.Identity()
        else:
            self.act_after_dec = nn.Sigmoid()

    def forward(self, wav):
        """
        Enc/Mask/Dec model forward with some additional options.
        For MultiChannel usage of asteroid-based models. (e.g. ConvTasNet)


        Args:
            wav (torch.Tensor): waveform tensor. 1D, 2D or 3D tensor, time last.

        Returns:
            torch.Tensor, of shape (batch, n_src, time) or (n_src, time).
        """
        # Remember shape to shape reconstruction, cast to Tensor for torchscript
        shape = jitable_shape(wav)
        # Reshape to (batch, n_mix, time)
        wav = _unsqueeze_to_3d(wav)

        # Real forward
        if self.use_encoder:
            tf_rep = self.forward_encoder(wav)
        else:
            tf_rep = wav

        if self.nb_channels == 2:
            tf_rep = rearrange(
                tf_rep, "b c f t -> b (c f) t"
            )  # c == 2 when stereo input.
        est_masks = self.forward_masker(tf_rep)

        if self.nb_channels == 2:
            tf_rep = rearrange(tf_rep, "b (c f) t -> b c f t", c=self.nb_channels)

        if self.apply_mask:
            # Since original asteroid implementation of masking includes unnecessary unsqueeze operation, we will do it manually.
            masked_tf_rep = est_masks * tf_rep
        else:
            masked_tf_rep = est_masks

        if self.use_decoder:
            decoded = self.forward_decoder(masked_tf_rep)
            reconstructed = pad_x_to_y(decoded, wav)
            reconstructed = self.act_after_dec(reconstructed)

            return masked_tf_rep, _shape_reconstructed(reconstructed, shape)

        else:
            decoded = masked_tf_rep

            return decoded