Spaces:
Running
Running
File size: 9,835 Bytes
a00b67a 28dfe16 a00b67a 0f8dcae a00b67a e721a01 a00b67a 68b4dbd 28dfe16 a00b67a 68b4dbd 28dfe16 a00b67a 68b4dbd a9060e6 0f8dcae e721a01 a00b67a 83d6d79 a00b67a 83d6d79 a00b67a 68b4dbd 28dfe16 d3344e1 28dfe16 a00b67a 68b4dbd a00b67a 68b4dbd a00b67a 68b4dbd a00b67a 68b4dbd a00b67a 68b4dbd e721a01 a00b67a 68b4dbd a00b67a 68b4dbd 9e538da a00b67a 95e32a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import json
import argparse
import copy
import numpy as np
import matplotlib.pyplot as plt
import torch
import tqdm
import librosa
import librosa.display
import soundfile as sf
import pyloudnorm as pyln
from dotmap import DotMap
import gradio as gr
from models import load_model_with_args
from separate_func import (
conv_tasnet_separate,
)
from utils import db2linear
tqdm.monitor_interval = 0
def separate_track_with_model(
args, model, device, track_audio, track_name, meter, augmented_gain
):
with torch.no_grad():
if (
args.model_loss_params.architecture == "conv_tasnet_mask_on_output"
or args.model_loss_params.architecture == "conv_tasnet"
):
estimates = conv_tasnet_separate(
args,
model,
device,
track_audio,
track_name,
meter=meter,
augmented_gain=augmented_gain,
)
return estimates
def parallel_mix(input, output, mix_coefficient):
sr = 44100
return sr, input[1] * mix_coefficient + output[1] * (1 - mix_coefficient)
def waveform_plot(input, output, prl_mix_ouptut, figsize_x=20, figsize_y=9):
sr = 44100
fig, ax = plt.subplots(
nrows=3, sharex=True, sharey=True, figsize=(figsize_x, figsize_y)
)
librosa.display.waveshow(int16_to_float32(input[1]).T, sr=sr, ax=ax[0])
ax[0].set(title="Loudness Normalized Input")
ax[0].label_outer()
librosa.display.waveshow(int16_to_float32(output[1]).T, sr=sr, ax=ax[1])
ax[1].set(title="De-limiter Output")
ax[1].label_outer()
librosa.display.waveshow(int16_to_float32(prl_mix_ouptut[1]).T, sr=sr, ax=ax[2])
ax[2].set(title="Parallel Mix of the Input and its De-limiter Output")
ax[2].label_outer()
return fig
def main(input, mix_coefficient):
parser = argparse.ArgumentParser(description="model test.py")
parser.add_argument("--target", type=str, default="all")
parser.add_argument("--weight_directory", type=str, default="weight")
parser.add_argument("--output_directory", type=str, default="output")
parser.add_argument("--use_gpu", type=bool, default=True)
parser.add_argument("--save_name_as_target", type=bool, default=False)
parser.add_argument(
"--loudnorm_input_lufs",
type=float,
default=None,
help="If you want to use loudnorm for input",
)
parser.add_argument(
"--save_output_loudnorm",
type=float,
default=-14.0,
help="Save loudness normalized outputs or not. If you want to save, input target loudness",
)
parser.add_argument(
"--save_mixed_output",
type=float,
default=True,
help="Save original+delimited-estimation mixed output with a ratio of default 0.5 (orginal) and 1 - 0.5 (estimation)",
)
parser.add_argument(
"--save_16k_mono",
type=bool,
default=False,
help="Save 16k mono wav files for FAD evaluation.",
)
parser.add_argument(
"--save_histogram",
type=bool,
default=False,
help="Save histogram of the output. Only valid when the task is 'delimit'",
)
parser.add_argument(
"--use_singletrackset",
type=bool,
default=False,
help="Use SingleTrackSet if input data is too long.",
)
args, _ = parser.parse_known_args()
with open(f"{args.weight_directory}/{args.target}.json", "r") as f:
args_dict = json.load(f)
args_dict = DotMap(args_dict)
for key, value in args_dict["args"].items():
if key in list(vars(args).keys()):
pass
else:
setattr(args, key, value)
args.test_output_dir = f"{args.output_directory}"
os.makedirs(args.test_output_dir, exist_ok=True)
device = torch.device(
"cuda" if torch.cuda.is_available() and args.use_gpu else "cpu"
)
###################### Define Models ######################
our_model = load_model_with_args(args)
our_model = our_model.to(device)
target_model_path = f"{args.weight_directory}/{args.target}.pth"
checkpoint = torch.load(target_model_path, map_location=device)
our_model.load_state_dict(checkpoint)
our_model.eval()
meter = pyln.Meter(44100)
track_audio, sr = librosa.load(input, sr=44100, mono=False)
if len(track_audio.shape) == 1: # mono
track_audio = np.stack([track_audio, track_audio], axis=0)
orig_sr = copy.deepcopy(sr)
track_name = "gradio_demo"
orig_audio = track_audio.copy()
augmented_gain = None
if args.loudnorm_input_lufs: # If you want to use loud-normalized input
track_lufs = meter.integrated_loudness(track_audio.T)
augmented_gain = args.loudnorm_input_lufs - track_lufs
track_audio = track_audio * db2linear(augmented_gain, eps=0.0)
track_audio = (
torch.as_tensor(track_audio, dtype=torch.float32).unsqueeze(0).to(device)
)
estimates = separate_track_with_model(
args, our_model, device, track_audio, track_name, meter, augmented_gain
)
if np.abs(estimates).max() > 1.0:
estimates = estimates / np.abs(estimates).max()
args.save_output_loudnorm = meter.integrated_loudness(estimates.T)
track_lufs = meter.integrated_loudness(orig_audio.T)
augmented_gain = args.save_output_loudnorm - track_lufs
orig_audio = orig_audio * db2linear(augmented_gain, eps=0.0)
prl_mix_out = orig_audio.T * mix_coefficient + estimates.T * (1 - mix_coefficient)
prl_mix_out = prl_mix_out * 32768
prl_mix_out = prl_mix_out.astype(np.int16)
estimates = estimates.T * 32768
estimates = estimates.astype(np.int16)
orig_audio = orig_audio.T * 32768
orig_audio = orig_audio.astype(np.int16)
return (
(sr, estimates),
(sr, orig_audio),
(sr, prl_mix_out),
)
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Music De-limiter
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
A demo for "Music De-Limiter via Sample-wise Gain Inversion" to appear in WASPAA 2023.<br>
Upload a stereo music (tested with .wav, .mp3, .m4a) file and then press "De-limit" button to apply the De-limiter.<br>
The processing is based on 44.1kHz sample rate. Other sample rate will be automatically resampled to 44.1kHz.<br>
Since we use a CPU instead of a GPU, it may require a few seconds to minutes.<br>
Then, you can apply a Parallel Mix technique, which is a simple linear mixing technique of "loudness normalized input" and the "de-limiter output", similar to Parallel Compression.<br>
If the coefficient is 0.3 then the output will be the "loudness_normalized_input * 0.3 + de-limiter_output * 0.7"<br>
Check our Paper <a href="https://arxiv.org/abs/2308.01187">[arXiv]</a>
Codes <a href="https://github.com/jeonchangbin49/De-limiter">[GitHub]</a>
Audio samples <a href="https://catnip-leaf-c6a.notion.site/Music-De-limiter-7072c0e725fd42249ff78cbbaedc95d7?pvs=4">[Notion]</a> <br>
Please let me know any issues or comments on [email protected] or the "Community" page (the upper right section of this page).
</div>
"""
)
with gr.Row():
with gr.Column():
input_audio = gr.Audio(type="filepath", label="De-limiter Input")
btn = gr.Button("De-Limit")
with gr.Column():
loud_norm_input = gr.Audio(
label="Loudness Normalized Input (-14LUFS)", show_download_button=True
)
output_audio = gr.Audio(
label="De-limiter Output", show_download_button=True
)
output_audio_parallel = gr.Audio(
label="Parallel Mix of the Input and its De-limiter Output",
show_download_button=True,
)
slider = gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.5,
label="Parallel Mix Coefficient",
)
btn.click(
fn=main,
inputs=[input_audio, slider],
outputs=[output_audio, loud_norm_input, output_audio_parallel],
)
slider.release(
fn=parallel_mix,
inputs=[loud_norm_input, output_audio, slider],
outputs=output_audio_parallel,
)
with gr.Row():
with gr.Column():
plot = gr.Plot(label="Plots")
btn2 = gr.Button("Show Plots")
slider_plot_x = gr.Slider(
minimum=1, maximum=100, step=1, value=20, label="Plot X-axis size"
)
slider_plot_y = gr.Slider(
minimum=1, maximum=30, step=1, value=9, label="Plot Y-axis size"
)
btn2.click(
fn=waveform_plot,
inputs=[
loud_norm_input,
output_audio,
output_audio_parallel,
slider_plot_x,
slider_plot_y,
],
outputs=plot,
)
if __name__ == "__main__":
demo.launch()
# demo.launch(debug=True)
|