File size: 8,273 Bytes
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# To be honest... this is not ddp.
import os
import json
import argparse
import glob

import torch
import tqdm
import musdb
import librosa
import soundfile as sf
import pyloudnorm as pyln
from dotmap import DotMap

from models import load_model_with_args
from separate_func import (
    conv_tasnet_separate,
)
from utils import str2bool, db2linear


tqdm.monitor_interval = 0


def separate_track_with_model(
    args, model, device, track_audio, track_name, meter, augmented_gain
):
    with torch.no_grad():
        if (
            args.model_loss_params.architecture == "conv_tasnet_mask_on_output"
            or args.model_loss_params.architecture == "conv_tasnet"
        ):
            estimates = conv_tasnet_separate(
                args,
                model,
                device,
                track_audio,
                track_name,
                meter=meter,
                augmented_gain=augmented_gain,
            )

        return estimates


def main():
    parser = argparse.ArgumentParser(description="model test.py")

    parser.add_argument("--target", type=str, default="all")
    parser.add_argument("--data_root", type=str, default="/path/to/musdb_XL")
    parser.add_argument(
        "--use_musdb",
        type=str2bool,
        default=True,
        help="Use musdb test data or just want to inference other samples?",
    )
    parser.add_argument("--exp_name", type=str, default="delimit_6_s')
    parser.add_argument("--manual_output_name", type=str, default=None)
    parser.add_argument(
        "--output_directory", type=str, default="/path/to/results"
    )
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_arugment("--save_name_as_target", type=str2bool, default=True)
    parser.add_argument(
        "--loudnorm_input_lufs",
        type=float,
        default=None,
        help="If you want to use loudnorm, input target lufs",
    )
    parser.add_argument(
        "--use_singletrackset",
        type=str2bool,
        default=False,
        help="Use SingleTrackSet for X-UMX",
    )
    parser.add_argument(
        "--best_model",
        type=str2bool,
        default=True,
        help="Use best model or lastly saved model",
    )
    parser.add_argument(
        "--save_output_loudnorm",
        type=float,
        default=None,
        help="Save loudness normalized outputs or not. If you want to save, input target loudness",
    )
    parser.add_argument(
        "--save_mixed_output",
        type=float,
        default=None,
        help="Save original+delimited-estimation mixed output with a ratio of default 0.5 (orginal) and 1 - 0.5 (estimation)",
    )
    parser.add_argument(
        "--save_16k_mono",
        type=str2bool,
        default=False,
        help="Save 16k mono wav files for FAD evaluation.",
    )
    parser.add_argument(
        "--save_histogram",
        type=str2bool,
        default=False,
        help="Save histogram of the output. Only valid when the task is 'delimit'",
    )

    args, _ = parser.parse_known_args()

    args.output_dir = f"{args.output_directory}/checkpoint/{args.exp_name}"
    with open(f"{args.output_dir}/{args.target}.json", "r") as f:
        args_dict = json.load(f)
        args_dict = DotMap(args_dict)

    for key, value in args_dict["args"].items():
        if key in list(vars(args).keys()):
            pass
        else:
            setattr(args, key, value)

    args.test_output_dir = f"{args.output_directory}/test/{args.exp_name}"

    if args.manual_output_name != None:
        args.test_output_dir = f"{args.output_directory}/test/{args.manual_output_name}"
    os.makedirs(args.test_output_dir, exist_ok=True)

    device = torch.device(
        "cuda" if torch.cuda.is_available() and args.use_gpu else "cpu"
    )

    ###################### Define Models ######################
    our_model = load_model_with_args(args)
    our_model = our_model.to(device)
    print(our_model)
    pytorch_total_params = sum(
        p.numel() for p in our_model.parameters() if p.requires_grad
    )
    print("Total number of parameters", pytorch_total_params)
    # Future work => Torchinfo would be better for this purpose.

    if args.best_model:
        target_model_path = f"{args.output_dir}/{args.target}.pth"
        checkpoint = torch.load(target_model_path, map_location=device)
        our_model.load_state_dict(checkpoint)
    else:  # when using lastly saved model
        target_model_path = f"{args.output_dir}/{args.target}.chkpnt"
        checkpoint = torch.load(target_model_path, map_location=device)
        our_model.load_state_dict(checkpoint["state_dict"])

    our_model.eval()

    meter = pyln.Meter(44100)

    if args.use_musdb:
        test_tracks = musdb.DB(root=args.data_root, subsets="test", is_wav=True)

        for track in tqdm.tqdm(test_tracks):
            track_name = track.name
            track_audio = track.audio

            orig_audio = track_audio.copy()

            augmented_gain = None
            print("Now De-limiting : ", track_name)

            if args.loudnorm_input_lufs:  # If you want to use loud-normalized input
                track_lufs = meter.integrated_loudness(track_audio)
                augmented_gain = args.loudnorm_input_lufs - track_lufs
                track_audio = track_audio * db2linear(augmented_gain, eps=0.0)

            track_audio = (
                torch.as_tensor(track_audio.T, dtype=torch.float32)
                .unsqueeze(0)
                .to(device)
            )

            estimates = separate_track_with_model(
                args, our_model, device, track_audio, track_name, meter, augmented_gain
            )

            if args.save_mixed_output:
                orig_audio = orig_audio.T
                track_lufs = meter.integrated_loudness(orig_audio.T)
                augmented_gain = args.save_output_loudnorm - track_lufs
                orig_audio = orig_audio * db2linear(augmented_gain, eps=0.0)

                mixed_output = orig_audio * args.save_mixed_output + estimates * (
                    1 - args.save_mixed_output
                )

                sf.write(
                    f"{args.test_output_dir}/{track_name}/{str(args.save_mixed_output)}_mixed.wav",
                    mixed_output.T,
                    args.data_params.sample_rate,
                )
    else:
        test_tracks = glob.glob(f"{args.data_root}/*.wav") + glob.glob(
            f"{args.data_root}/*.mp3"
        )

        for track in tqdm.tqdm(test_tracks):
            track_name = os.path.basename(track).replace(".wav", "").replace(".mp3", "")
            track_audio, sr = librosa.load(
                track, sr=None, mono=False
            )  # sr should be 44100

            orig_audio = track_audio.copy()

            if sr != 44100:
                raise ValueError("Sample rate should be 44100")
            augmented_gain = None
            print("Now De-limiting : ", track_name)

            if args.loudnorm_input_lufs:  # If you want to use loud-normalized input
                track_lufs = meter.integrated_loudness(track_audio.T)
                augmented_gain = args.loudnorm_input_lufs - track_lufs
                track_audio = track_audio * db2linear(augmented_gain, eps=0.0)

            track_audio = (
                torch.as_tensor(track_audio, dtype=torch.float32)
                .unsqueeze(0)
                .to(device)
            )

            estimates = separate_track_with_model(
                args, our_model, device, track_audio, track_name, meter, augmented_gain
            )

            if args.save_mixed_output:
                track_lufs = meter.integrated_loudness(orig_audio.T)
                augmented_gain = args.save_output_loudnorm - track_lufs
                orig_audio = orig_audio * db2linear(augmented_gain, eps=0.0)

                mixed_output = orig_audio * args.save_mixed_output + estimates * (
                    1 - args.save_mixed_output
                )

                sf.write(
                    f"{args.test_output_dir}/{track_name}/{track_name}_mixed.wav",
                    mixed_output.T,
                    args.data_params.sample_rate,
                )


if __name__ == "__main__":
    main()