File size: 5,191 Bytes
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import json
import argparse
import glob

import torch
import tqdm
import librosa
import soundfile as sf
import pyloudnorm as pyln
from dotmap import DotMap

from models import load_model_with_args
from separate_func import (
    conv_tasnet_separate,
)
from utils import str2bool, db2linear


tqdm.monitor_interval = 0


def separate_track_with_model(
    args, model, device, track_audio, track_name, meter, augmented_gain
):
    with torch.no_grad():
        if (
            args.model_loss_params.architecture == "conv_tasnet_mask_on_output"
            or args.model_loss_params.architecture == "conv_tasnet"
        ):
            estimates = conv_tasnet_separate(
                args,
                model,
                device,
                track_audio,
                track_name,
                meter=meter,
                augmented_gain=augmented_gain,
            )

        return estimates


def main():
    parser = argparse.ArgumentParser(description="model test.py")
    parser.add_argument("--target", type=str, default="all")
    parser.add_argument("--data_root", type=str, default="./input_data")
    parser.add_argument("--weight_directory", type=str, default="./weight")
    parser.add_argument("--output_directory", type=str, default="./output")
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--save_name_as_target", type=str2bool, default=False)
    parser.add_argument(
        "--loudnorm_input_lufs",
        type=float,
        default=None,
        help="If you want to use loudnorm for input",
    )
    parser.add_argument(
        "--save_output_loudnorm",
        type=float,
        default=-14.0,
        help="Save loudness normalized outputs or not. If you want to save, input target loudness",
    )
    parser.add_argument(
        "--save_mixed_output",
        type=float,
        default=None,
        help="Save original+delimited-estimation mixed output with a ratio of default 0.5 (orginal) and 1 - 0.5 (estimation)",
    )
    parser.add_argument(
        "--save_16k_mono",
        type=str2bool,
        default=False,
        help="Save 16k mono wav files for FAD evaluation.",
    )
    parser.add_argument(
        "--save_histogram",
        type=str2bool,
        default=False,
        help="Save histogram of the output. Only valid when the task is 'delimit'",
    )
    parser.add_argument(
        "--use_singletrackset",
        type=str2bool,
        default=False,
        help="Use SingleTrackSet if input data is too long.",
    )

    args, _ = parser.parse_known_args()

    with open(f"{args.weight_directory}/{args.target}.json", "r") as f:
        args_dict = json.load(f)
        args_dict = DotMap(args_dict)

    for key, value in args_dict["args"].items():
        if key in list(vars(args).keys()):
            pass
        else:
            setattr(args, key, value)

    args.test_output_dir = f"{args.output_directory}"
    os.makedirs(args.test_output_dir, exist_ok=True)

    device = torch.device(
        "cuda" if torch.cuda.is_available() and args.use_gpu else "cpu"
    )

    ###################### Define Models ######################
    our_model = load_model_with_args(args)
    our_model = our_model.to(device)

    target_model_path = f"{args.weight_directory}/{args.target}.pth"
    checkpoint = torch.load(target_model_path, map_location=device)
    our_model.load_state_dict(checkpoint)

    our_model.eval()

    meter = pyln.Meter(44100)

    test_tracks = glob.glob(f"{args.data_root}/*.wav") + glob.glob(
        f"{args.data_root}/*.mp3"
    )

    for track in tqdm.tqdm(test_tracks):
        track_name = os.path.basename(track).replace(".wav", "").replace(".mp3", "")
        track_audio, sr = librosa.load(track, sr=None, mono=False)  # sr should be 44100

        orig_audio = track_audio.copy()

        if sr != 44100:
            raise ValueError("Sample rate should be 44100")
        augmented_gain = None
        print("Now De-limiting : ", track_name)

        if args.loudnorm_input_lufs:  # If you want to use loud-normalized input
            track_lufs = meter.integrated_loudness(track_audio.T)
            augmented_gain = args.loudnorm_input_lufs - track_lufs
            track_audio = track_audio * db2linear(augmented_gain, eps=0.0)

        track_audio = (
            torch.as_tensor(track_audio, dtype=torch.float32).unsqueeze(0).to(device)
        )

        estimates = separate_track_with_model(
            args, our_model, device, track_audio, track_name, meter, augmented_gain
        )

        if args.save_mixed_output:
            track_lufs = meter.integrated_loudness(orig_audio.T)
            augmented_gain = args.save_output_loudnorm - track_lufs
            orig_audio = orig_audio * db2linear(augmented_gain, eps=0.0)

            mixed_output = orig_audio * args.save_mixed_output + estimates * (
                1 - args.save_mixed_output
            )

            sf.write(
                f"{args.test_output_dir}/{track_name}/{track_name}_mixed.wav",
                mixed_output.T,
                args.data_params.sample_rate,
            )


if __name__ == "__main__":
    main()