File size: 20,954 Bytes
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# Dataloader based on https://github.com/jeonchangbin49/LimitAug
import os
from glob import glob
import random
from typing import Optional, Callable

import numpy as np
import torch
import librosa
from torch.utils.data import Dataset
import pyloudnorm as pyln
from pedalboard import Pedalboard, Limiter, Gain, Compressor, Clipping

from utils import load_wav_arbitrary_position_stereo, db2linear


# based on https://github.com/sigsep/open-unmix-pytorch
def aug_from_str(list_of_function_names: list):
    if list_of_function_names:
        return Compose([globals()["_augment_" + aug] for aug in list_of_function_names])
    else:
        return lambda audio: audio


class Compose(object):
    """Composes several augmentation transforms.
    Args:
        augmentations: list of augmentations to compose.
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, audio: torch.Tensor) -> torch.Tensor:
        for t in self.transforms:
            audio = t(audio)
        return audio


# numpy based augmentation
# based on https://github.com/sigsep/open-unmix-pytorch
def _augment_gain(audio, low=0.25, high=1.25):
    """Applies a random gain between `low` and `high`"""
    g = low + random.random() * (high - low)
    return audio * g


def _augment_channelswap(audio):
    """Swap channels of stereo signals with a probability of p=0.5"""
    if audio.shape[0] == 2 and random.random() < 0.5:
        return np.flip(audio, axis=0)  # axis=0 must be given
    else:
        return audio


# Linear gain increasing implementation for Method (1)
def apply_linear_gain_increase(mixture, target, board, meter, samplerate, target_lufs):
    mixture, target = mixture.T, target.T
    loudness = meter.integrated_loudness(mixture)

    if np.isinf(loudness):
        augmented_gain = 0.0
        board[0].gain_db = augmented_gain
    else:
        augmented_gain = target_lufs - loudness
        board[0].gain_db = augmented_gain
    mixture = board(mixture.T, samplerate)
    target = board(target.T, samplerate)
    return mixture, target


# LimitAug implementation for Method (2) and
# implementation of LimitAug then Loudness normalization for Method (4)
def apply_limitaug(
    audio,
    board,
    meter,
    samplerate,
    target_lufs,
    target_loudnorm_lufs=None,
    loudness=None,
):
    audio = audio.T
    if loudness is None:
        loudness = meter.integrated_loudness(audio)

    if np.isinf(loudness):
        augmented_gain = 0.0
        board[0].gain_db = augmented_gain
    else:
        augmented_gain = target_lufs - loudness
        board[0].gain_db = augmented_gain
    audio = board(audio.T, samplerate)

    if target_loudnorm_lufs:
        after_loudness = meter.integrated_loudness(audio.T)

        if np.isinf(after_loudness):
            pass
        else:
            target_gain = target_loudnorm_lufs - after_loudness
            audio = audio * db2linear(target_gain)
    return audio, loudness


"""
This dataloader implementation is based on https://github.com/sigsep/open-unmix-pytorch
"""


class MusdbTrainDataset(Dataset):
    def __init__(
        self,
        target: str = "vocals",
        root: str = None,
        seq_duration: Optional[float] = 6.0,
        samples_per_track: int = 64,
        source_augmentations: Optional[Callable] = lambda audio: audio,
        sample_rate: int = 44100,
        seed: int = 42,
        limitaug_method: str = "limitaug_then_loudnorm",
        limitaug_mode: str = "normal_L",
        limitaug_custom_target_lufs: float = None,
        limitaug_custom_target_lufs_std: float = None,
        target_loudnorm_lufs: float = -14.0,
        custom_limiter_attack_range: list = [2.0, 2.0],
        custom_limiter_release_range: list = [200.0, 200.0],
        *args,
        **kwargs,
    ) -> None:
        """
        Parameters
        ----------
        limitaug_method : str
        choose from ["linear_gain_increase", "limitaug", "limitaug_then_loudnorm", "only_loudnorm"]
        limitaug_mode : str
        choose from ["uniform", "normal", "normal_L", "normal_XL", "normal_short_term", "normal_L_short_term", "normal_XL_short_term", "custom"]
        limitaug_custom_target_lufs : float
        valid only when
        limitaug_mode == "custom"
        limitaug_custom_target_lufs_std : float
        also valid only when
        limitaug_mode == "custom
        target_loudnorm_lufs : float
        valid only when
        limitaug_method == 'limitaug_then_loudnorm' or 'only_loudnorm'
        default is -14.
        To the best of my knowledge, Spotify and Youtube music is using -14 as a reference loudness normalization level.
        No special reason for the choice of -14 as target_loudnorm_lufs.
        target : str
            target name of the source to be separated, defaults to ``vocals``.
        root : str
            root path of MUSDB
        seq_duration : float
            training is performed in chunks of ``seq_duration`` (in seconds,
            defaults to ``None`` which loads the full audio track
        samples_per_track : int
            sets the number of samples, yielded from each track per epoch.
            Defaults to 64
        source_augmentations : list[callables]
            provide list of augmentation function that take a multi-channel
            audio file of shape (src, samples) as input and output. Defaults to
            no-augmentations (input = output)
        seed : int
            control randomness of dataset iterations
        args, kwargs : additional keyword arguments
            used to add further control for the musdb dataset
            initialization function.
        """

        self.seed = seed
        random.seed(seed)
        self.seq_duration = seq_duration
        self.target = target
        self.samples_per_track = samples_per_track
        self.source_augmentations = source_augmentations
        self.sample_rate = sample_rate

        self.root = root
        self.sources = ["vocals", "bass", "drums", "other"]
        self.train_list = glob(f"{self.root}/train/*")
        self.valid_list = [
            "ANiMAL - Rockshow",
            "Actions - One Minute Smile",
            "Alexander Ross - Goodbye Bolero",
            "Clara Berry And Wooldog - Waltz For My Victims",
            "Fergessen - Nos Palpitants",
            "James May - On The Line",
            "Johnny Lokke - Promises & Lies",
            "Leaf - Summerghost",
            "Meaxic - Take A Step",
            "Patrick Talbot - A Reason To Leave",
            "Skelpolu - Human Mistakes",
            "Traffic Experiment - Sirens",
            "Triviul - Angelsaint",
            "Young Griffo - Pennies",
        ]

        self.train_list = [
            x for x in self.train_list if os.path.basename(x) not in self.valid_list
        ]

        # limitaug related
        self.limitaug_method = limitaug_method
        self.limitaug_mode = limitaug_mode
        self.limitaug_custom_target_lufs = limitaug_custom_target_lufs
        self.limitaug_custom_target_lufs_std = limitaug_custom_target_lufs_std
        self.target_loudnorm_lufs = target_loudnorm_lufs
        self.meter = pyln.Meter(self.sample_rate)

        # Method (1) in our paper's Results section and Table 5
        if self.limitaug_method == "linear_gain_increase":
            print("using linear gain increasing!")
            self.board = Pedalboard([Gain(gain_db=0.0)])

        # Method (2) in our paper's Results section and Table 5
        elif self.limitaug_method == "limitaug":
            print("using limitaug!")
            self.board = Pedalboard(
                [Gain(gain_db=0.0), Limiter(threshold_db=0.0, release_ms=100.0)]
            )

        # Method (3) in our paper's Results section and Table 5
        elif self.limitaug_method == "only_loudnorm":
            print("using only loudness normalized inputs")

        # Method (4) in our paper's Results section and Table 5
        elif self.limitaug_method == "limitaug_then_loudnorm":
            print("using limitaug then loudness normalize!")
            self.board = Pedalboard(
                [Gain(gain_db=0.0), Limiter(threshold_db=0.0, release_ms=100.0)]
            )

        elif self.limitaug_method == "custom_limiter_limitaug":
            print("using Custom limiter limitaug!")
            self.custom_limiter_attack_range = custom_limiter_attack_range
            self.custom_limiter_release_range = custom_limiter_release_range
            self.board = Pedalboard(
                [
                    Gain(gain_db=0.0),
                    Compressor(
                        threshold_db=-10.0, ratio=4.0, attack_ms=2.0, release_ms=200.0
                    ),  # attack_ms and release_ms will be changed later.
                    Compressor(
                        threshold_db=0.0,
                        ratio=1000.0,
                        attack_ms=0.001,
                        release_ms=100.0,
                    ),
                    Gain(gain_db=3.75),
                    Clipping(threshold_db=0.0),
                ]
            )  # This implementation is the same as JUCE Limiter.
            # However, we want the first compressor to have a variable attack and release time.
            # Therefore, we use the Custom Limiter instead of the JUCE Limiter.

        self.limitaug_mode_statistics = {
            "normal": [
                -15.954,
                1.264,
            ],  # -15.954 is mean LUFS of musdb-hq and 1.264 is standard deviation
            "normal_L": [
                -10.887,
                1.191,
            ],  # -10.887 is mean LUFS of musdb-L and 1.191 is standard deviation
            "normal_XL": [
                -8.608,
                1.165,
            ],  # -8.608 is mean LUFS of musdb-L and 1.165 is standard deviation
            "normal_short_term": [
                -17.317,
                5.036,
            ],  # In our experiments, short-term statistics were not helpful.
            "normal_L_short_term": [-12.303, 5.233],
            "normal_XL_short_term": [-9.988, 5.518],
            "custom": [limitaug_custom_target_lufs, limitaug_custom_target_lufs_std],
        }

    def sample_target_lufs(self):
        if (
            self.limitaug_mode == "uniform"
        ):  # if limitaug_mode is uniform, then choose target_lufs from uniform distribution
            target_lufs = random.uniform(-20, -5)
        else:  # else, choose target_lufs from gaussian distribution
            target_lufs = random.gauss(
                self.limitaug_mode_statistics[self.limitaug_mode][0],
                self.limitaug_mode_statistics[self.limitaug_mode][1],
            )

        return target_lufs

    def get_limitaug_results(self, mixture, target):
        # Apply linear gain increasing (Method (1))
        if self.limitaug_method == "linear_gain_increase":
            target_lufs = self.sample_target_lufs()
            mixture, target = apply_linear_gain_increase(
                mixture,
                target,
                self.board,
                self.meter,
                self.sample_rate,
                target_lufs=target_lufs,
            )

        # Apply LimitAug (Method (2))
        elif self.limitaug_method == "limitaug":
            self.board[1].release_ms = random.uniform(30.0, 200.0)
            mixture_orig = mixture.copy()
            target_lufs = self.sample_target_lufs()
            mixture, _ = apply_limitaug(
                mixture,
                self.board,
                self.meter,
                self.sample_rate,
                target_lufs=target_lufs,
            )
            print("mixture shape:", mixture.shape)
            print("target shape:", target.shape)
            target *= mixture / (mixture_orig + 1e-8)

        # Apply only loudness normalization (Method(3))
        elif self.limitaug_method == "only_loudnorm":
            mixture_loudness = self.meter.integrated_loudness(mixture.T)
            if np.isinf(
                mixture_loudness
            ):  # if the source is silence, then mixture_loudness is -inf.
                pass
            else:
                augmented_gain = (
                    self.target_loudnorm_lufs - mixture_loudness
                )  # default target_loudnorm_lufs is -14.
                mixture = mixture * db2linear(augmented_gain)
                target = target * db2linear(augmented_gain)

        # Apply LimitAug then loudness normalization (Method (4))
        elif self.limitaug_method == "limitaug_then_loudnorm":
            self.board[1].release_ms = random.uniform(30.0, 200.0)
            mixture_orig = mixture.copy()
            target_lufs = self.sample_target_lufs()
            mixture, _ = apply_limitaug(
                mixture,
                self.board,
                self.meter,
                self.sample_rate,
                target_lufs=target_lufs,
                target_loudnorm_lufs=self.target_loudnorm_lufs,
            )
            target *= mixture / (mixture_orig + 1e-8)

        # Apply LimitAug using Custom Limiter
        elif self.limitaug_method == "custom_limiter_limitaug":
            # Change attack time of First compressor of the Limiter
            self.board[1].attack_ms = random.uniform(
                self.custom_limiter_attack_range[0], self.custom_limiter_attack_range[1]
            )
            # Change release time of First compressor of the Limiter
            self.board[1].release_ms = random.uniform(
                self.custom_limiter_release_range[0],
                self.custom_limiter_release_range[1],
            )
            # Change release time of Second compressor of the Limiter
            self.board[2].release_ms = random.uniform(30.0, 200.0)
            mixture_orig = mixture.copy()
            target_lufs = self.sample_target_lufs()
            mixture, _ = apply_limitaug(
                mixture,
                self.board,
                self.meter,
                self.sample_rate,
                target_lufs=target_lufs,
                target_loudnorm_lufs=self.target_loudnorm_lufs,
            )
            target *= mixture / (mixture_orig + 1e-8)

        return mixture, target

    def __getitem__(self, index):
        audio_sources = []
        target_ind = None

        for k, source in enumerate(self.sources):
            # memorize index of target source
            if source == self.target:  # if source is 'vocals'
                target_ind = k
                track_path = self.train_list[
                    index // self.samples_per_track
                ]  # we want to use # training samples per each track.
                audio_path = f"{track_path}/{source}.wav"
                audio = load_wav_arbitrary_position_stereo(
                    audio_path, self.sample_rate, self.seq_duration
                )
            else:
                track_path = random.choice(self.train_list)
                audio_path = f"{track_path}/{source}.wav"
                audio = load_wav_arbitrary_position_stereo(
                    audio_path, self.sample_rate, self.seq_duration
                )
            audio = self.source_augmentations(audio)
            audio_sources.append(audio)

        stems = np.stack(audio_sources, axis=0)

        # # apply linear mix over source index=0
        x = stems.sum(0)
        # get the target stem
        y = stems[target_ind]

        # Apply the limitaug,
        x, y = self.get_limitaug_results(x, y)

        x = torch.as_tensor(x, dtype=torch.float32)
        y = torch.as_tensor(y, dtype=torch.float32)

        return x, y

    def __len__(self):
        return len(self.train_list) * self.samples_per_track


class MusdbValidDataset(Dataset):
    def __init__(
        self,
        target: str = "vocals",
        root: str = None,
        *args,
        **kwargs,
    ) -> None:
        """MUSDB18 torch.data.Dataset that samples from the MUSDB tracks
        using track and excerpts with replacement.
        Parameters
        ----------
        target : str
            target name of the source to be separated, defaults to ``vocals``.
        root : str
            root path of MUSDB18HQ dataset, defaults to ``None``.
        args, kwargs : additional keyword arguments
            used to add further control for the musdb dataset
            initialization function.
        """
        self.target = target
        self.sample_rate = 44100.0  # musdb is fixed sample rate

        self.root = root
        self.sources = ["vocals", "bass", "drums", "other"]
        self.train_list = glob(f"{self.root}/train/*")

        self.valid_list = [
            "ANiMAL - Rockshow",
            "Actions - One Minute Smile",
            "Alexander Ross - Goodbye Bolero",
            "Clara Berry And Wooldog - Waltz For My Victims",
            "Fergessen - Nos Palpitants",
            "James May - On The Line",
            "Johnny Lokke - Promises & Lies",
            "Leaf - Summerghost",
            "Meaxic - Take A Step",
            "Patrick Talbot - A Reason To Leave",
            "Skelpolu - Human Mistakes",
            "Traffic Experiment - Sirens",
            "Triviul - Angelsaint",
            "Young Griffo - Pennies",
        ]
        self.valid_list = [
            x for x in self.train_list if os.path.basename(x) in self.valid_list
        ]

    def __getitem__(self, index):
        audio_sources = []
        target_ind = None

        for k, source in enumerate(self.sources):
            # memorize index of target source
            if source == self.target:  # if source is 'vocals'
                target_ind = k
                track_path = self.valid_list[index]
                song_name = os.path.basename(track_path)
                audio_path = f"{track_path}/{source}.wav"
                # audio = utils.load_wav_stereo(audio_path, self.sample_rate)
                audio = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0]
            else:
                track_path = self.valid_list[index]
                song_name = os.path.basename(track_path)
                audio_path = f"{track_path}/{source}.wav"
                # audio = utils.load_wav_stereo(audio_path, self.sample_rate)
                audio = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0]

            audio = torch.as_tensor(audio, dtype=torch.float32)
            audio_sources.append(audio)

        stems = torch.stack(audio_sources, dim=0)
        # # apply linear mix over source index=0
        x = stems.sum(0)
        # get the target stem
        y = stems[target_ind]

        return x, y, song_name

    def __len__(self):
        return len(self.valid_list)


# If you want to check the LUFS values of training examples, run this.
if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(
        description="Make musdb-L and musdb-XL dataset from its ratio data"
    )

    parser.add_argument(
        "--musdb_root",
        type=str,
        default="/path/to/musdb",
        help="root path of musdb-hq dataset",
    )
    parser.add_argument(
        "--limitaug_method",
        type=str,
        default="limitaug",
        choices=[
            "linear_gain_increase",
            "limitaug",
            "limitaug_then_loudnorm",
            "only_loudnorm",
            None,
        ],
        help="choose limitaug method",
    )
    parser.add_argument(
        "--limitaug_mode",
        type=str,
        default="normal_L",
        choices=[
            "uniform",
            "normal",
            "normal_L",
            "normal_XL",
            "normal_short_term",
            "normal_L_short_term",
            "normal_XL_short_term",
            "custom",
        ],
        help="if you use LimitAug, what lufs distribution to target",
    )
    parser.add_argument(
        "--limitaug_custom_target_lufs",
        type=float,
        default=None,
        help="if limitaug_mode is custom, set custom target lufs for LimitAug",
    )

    args, _ = parser.parse_known_args()

    source_augmentations_ = aug_from_str(["gain", "channelswap"])

    train_dataset = MusdbTrainDataset(
        target="vocals",
        root=args.musdb_root,
        seq_duration=6.0,
        source_augmentations=source_augmentations_,
        limitaug_method=args.limitaug_method,
        limitaug_mode=args.limitaug_mode,
        limitaug_custom_target_lufs=args.limitaug_custom_target_lufs,
    )

    dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=1,
        shuffle=True,
        num_workers=4,
        pin_memory=True,
        drop_last=False,
    )

    meter = pyln.Meter(44100)
    for i in range(5):
        for x, y in dataloader:
            loudness = meter.integrated_loudness(x[0].numpy().T)
            print(f"mixture loudness : {loudness} LUFS")