Spaces:
Sleeping
Sleeping
input Jacqueline's code
Browse files- tasks/text.py +9 -12
tasks/text.py
CHANGED
|
@@ -70,19 +70,16 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 70 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 71 |
#--------------------------------------------------------------------------------------------
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
except Exception as e:
|
| 84 |
-
print(f"An error occurred during prediction: {str(e)}")
|
| 85 |
-
raise
|
| 86 |
|
| 87 |
#--------------------------------------------------------------------------------------------
|
| 88 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
|
| 70 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 71 |
#--------------------------------------------------------------------------------------------
|
| 72 |
|
| 73 |
+
#make predictions
|
| 74 |
+
predictions = []
|
| 75 |
+
|
| 76 |
+
for i in range(len(test_dataset["quote"])):
|
| 77 |
+
encoded_input = tokenizer(test_dataset["quote"][i], truncation=True, padding=True, return_tensors="tf")
|
| 78 |
+
outputs = model(encoded_input["input_ids"], attention_mask=encoded_input["attention_mask"], training=False)
|
| 79 |
+
predictions.append(tf.argmax(outputs.logits, axis=1))
|
| 80 |
|
| 81 |
+
# Get true labels
|
| 82 |
+
true_labels = test_dataset["label"]
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
#--------------------------------------------------------------------------------------------
|
| 85 |
# YOUR MODEL INFERENCE STOPS HERE
|