Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import PIL.Image as Image | |
import gradio as gr | |
import numpy as np | |
import math | |
from pathlib import Path | |
from ultralytics import ASSETS, YOLO | |
DIR_NAME = Path(os.path.dirname(__file__)) | |
DETECTION_MODEL_n = os.path.join(DIR_NAME, 'models', 'YOLOv8-N_CNO_Detection.pt') | |
DETECTION_MODEL_s = os.path.join(DIR_NAME, 'models', 'YOLOv8-S_CNO_Detection.pt') | |
DETECTION_MODEL_m = os.path.join(DIR_NAME, 'models', 'YOLOv8-M_CNO_Detection.pt') | |
DETECTION_MODEL_l = os.path.join(DIR_NAME, 'models', 'YOLOv8-L_CNO_Detection.pt') | |
DETECTION_MODEL_x = os.path.join(DIR_NAME, 'models', 'YOLOv8-X_CNO_Detection.pt') | |
# MODEL = os.path.join(DIR_NAME, 'models', 'YOLOv8-M_CNO_Detection.pt') | |
# model = YOLO(MODEL) | |
def predict_image(name, model, img, conf_threshold, iou_threshold): | |
"""Predicts and plots labeled objects in an image using YOLOv8 model with adjustable confidence and IOU thresholds.""" | |
gr.Info("Starting process") | |
# gr.Warning("Name is empty") | |
if name == "": | |
gr.Warning("Name is empty") | |
if model == 'YOLOv8-N': | |
CNO_model = YOLO(DETECTION_MODEL_n) | |
elif model == 'YOLOv8-S': | |
CNO_model = YOLO(DETECTION_MODEL_s) | |
elif model == 'YOLOv8-M': | |
CNO_model = YOLO(DETECTION_MODEL_m) | |
elif model == 'YOLOv8-L': | |
CNO_model = YOLO(DETECTION_MODEL_l) | |
else: | |
CNO_model = YOLO(DETECTION_MODEL_x) | |
results = CNO_model.predict( | |
source=img, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=False, | |
show_conf=False, | |
imgsz=512, | |
max_det=1200 | |
) | |
for r in results: | |
CNO = len(r.boxes) | |
CNO_coor = np.empty([CNO, 2], dtype=int) | |
for j in range(CNO): | |
# w = r.boxes.xywh[j][2] | |
# h = r.boxes.xywh[j][3] | |
# area = (math.pi * w * h / 4) * 20 * 20 / (512 * 512) | |
# total_area += area | |
# bbox_img = r.orig_img | |
x = round(r.boxes.xywh[j][0].item()) | |
y = round(r.boxes.xywh[j][1].item()) | |
x1 = round(r.boxes.xyxy[j][0].item()) | |
y1 = round(r.boxes.xyxy[j][1].item()) | |
x2 = round(r.boxes.xyxy[j][2].item()) | |
y2 = round(r.boxes.xyxy[j][3].item()) | |
CNO_coor[j] = [x, y] | |
cv2.rectangle(r.orig_img, (x1, y1), (x2, y2), (0, 255, 0), 1) | |
im_array = r.orig_img | |
im = Image.fromarray(im_array[..., ::-1]) | |
CNO_count = "CNO Count: " + str(CNO) | |
return CNO_count, im | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=[ | |
gr.Textbox(label="User Name"), | |
gr.Radio(["YOLOv8-N", "YOLOv8-S", "YOLOv8-M", "YOLOv8-L", "YOLOv8-X"], value="YOLOv8-M"), | |
# gr.Image(type="filepath", label="Upload Image"), | |
gr.File(file_types=["image"], file_count="multiple", label="Upload Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.2, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.5, label="IoU threshold") | |
], | |
outputs=[gr.Label(label="Analysis Results"), gr.Image(type="pil", label="Result")], | |
title="AFM AI Analysis", | |
description="Upload images for inference. The YOLOv8-M model is used by default.", | |
theme=gr.themes.Default() | |
) | |
if __name__ == '__main__': | |
iface.launch() | |