Spaces:
Sleeping
Sleeping
File size: 6,967 Bytes
80eac1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import os
import re
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import MultiCursor
from scipy import ndimage
from matplotlib import cm
from PIL import Image, ImageDraw, ImageFont
from skimage import morphology
from skimage.measure import regionprops
def comp(*ims, figsize=(20, 10)):
N = len(ims)
ncols = {1: 1, 2: 2, 3: 3, 4: 2, 5: 3, 6: 3, 7: 4, 8: 4, 9: 3}
nrows = {1: 1, 2: 1, 3: 1, 4: 2, 5: 2, 6: 2, 7: 2, 8: 2, 9: 3}
fig, axes = plt.subplots(ncols=ncols[N], nrows=nrows[N], sharex=True, sharey=True, figsize=figsize)
fig.subplots_adjust(wspace=0.01, hspace=0.01)
axes = axes.ravel()
cursor = MultiCursor(fig.canvas, axes,
horizOn=True, vertOn=True, color='red', linewidth=1)
for i in range(N):
axes[i].imshow(ims[i])
return fig, axes, cursor
def load_im(fn):
f = open(fn, 'rb')
a = f.read()
f.close()
aa = str(a[:2048])
xpix = int(re.findall('xpixels\s?=\s?([0-9]*)', aa)[0])
ypix = int(re.findall('ypixels\s?=\s?([0-9]*)', aa)[0])
a = a[2048:]
words = [a[k * 2:k * 2 + 2] for k in range(xpix * ypix)]
arr = [int.from_bytes(words[k], byteorder='little', signed=True) for k in range(len(words))]
im = np.array(arr).reshape((ypix, xpix))
im = (im.T - np.mean(im, axis=1) +
np.mean(ndimage.gaussian_filter(im, 10), axis=1)).T # palliate horizontal artifact
im = im - np.min(im)
im = im / np.max(im) # normalize to 0.0-1.0
return im
def G(x):
return 1 - np.abs(x) ** .5
def growcut(land, labels, strength, maxiter=5):
Ni, Nj = land.shape
sidei, sidej = np.arange(Ni), np.arange(Nj)
ij = np.dstack(np.meshgrid(sidei, sidej))[:, :, ::-1]
iijj = np.tile(ij, (9, 1, 1, 1))
for i, k in enumerate(((0, 0), (1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1))):
iijj[i, :, :, :] += np.array(k)
iijj[i, :, :, 0] = iijj[i, :, :, 0].clip(0, land.shape[0] - 1)
iijj[i, :, :, 1] = iijj[i, :, :, 1].clip(0, land.shape[1] - 1)
neigh_slice = np.s_[iijj[:, :, :, 0], iijj[:, :, :, 1]]
this_labels = labels * 1
this_strength = strength * 1
neigh_val = land[neigh_slice]
jump_diff = land - neigh_val
g = G(jump_diff)
for i in range(maxiter):
# print(np.sum(this_labels), end=' ')
neigh_lab = this_labels[neigh_slice] * 1
neigh_str = this_strength[neigh_slice] * 1
attack_force = g * neigh_str
new_layer = np.argmax(attack_force, axis=0)
new_lab = neigh_lab[new_layer, iijj[0, :, :, 0], iijj[0, :, :, 1]] * 1
new_strength = attack_force[new_layer, iijj[0, :, :, 0], iijj[0, :, :, 1]] * 1
this_labels = new_lab
this_strength = new_strength
return this_labels, this_strength
def pyramid_contrast(im):
oom = []
ms = []
for d in (9, 15): # (9, 11, 13, 15, 17,25):#(3, 6, 9, 12, 15, 18, 21):
disk = morphology.disk(d)
m = ndimage.percentile_filter(im, 10, footprint=disk)
M = ndimage.percentile_filter(im, 90, footprint=disk)
om = (im - m) / (M - m)
om = np.nan_to_num(om).clip(0, 1)
oom.append(om)
ms.append(M - m)
oom = np.array(oom)
# ms = np.array(ms)
land = np.mean(oom, axis=0)
return land
def segmentate(land, alpha=0.7, beta=0.6):
if alpha < beta:
print("alpha must be greater than beta")
assert False
foreground = ndimage.binary_erosion(land > alpha, iterations=1)
background = land < beta
lab = ndimage.label(foreground)[0]
lab[lab > 0] += 1
lab[background] = 1
strength = (lab > 1) * 1. + (lab == 1) * 1.
this_labels, this_strength = growcut(land,
lab, strength, maxiter=25)
w = (this_labels != np.roll(this_labels, 1, axis=0)) + (this_labels != np.roll(this_labels, 1, axis=1))
b = w * 0
lab2 = ndimage.label(~w)[0]
for l in np.unique(lab2)[1:]:
if np.sum(foreground[l == lab2]) > 0:
b[l == lab2] = 1
lab2 = ndimage.label(ndimage.binary_dilation(this_labels > 1))[0]
return lab2
def filter_objects(lab2, max_eccentricity=0.93, min_size=10, max_size=200, min_convex_coverage=0.8):
props = regionprops(lab2) # object metrics
b = lab2 * 0.
for i in np.unique(lab2)[1:]:
ind = i - 1
e = props[ind].eccentricity
s = props[ind].area
c = s * 1 / props[ind].convex_area
# filter objects by eccentricity, size, ans convex hull coverage
if e < max_eccentricity and (min_size < s < max_size) and c > min_convex_coverage:
lev = 1
else:
lev = 2
b[lab2 == i] = lev
return b
def present(im, land, b):
original_im = cm.afmhot(im)[:, :, :3]
# Contrast Level 0.5
resim = 0.5 * land + (1 - 0.5) * im
enhanced_im = cm.afmhot(resim)[:, :, :3]
monochrome_land = np.tile(land, (3, 1, 1)).transpose((1, 2, 0))
detected = b == 1
detected = ndimage.binary_dilation(detected) # * (~ndimage.binary_erosion(detected))
filtered = b == 2
filtered = ndimage.binary_dilation(filtered) # * (~ndimage.binary_erosion(filtered))
monochrome_land[detected] *= np.array([.3, 1, .3])
monochrome_land[filtered] *= np.array([1, .6, .6])
newim = np.hstack((enhanced_im, monochrome_land))
newim = np.dstack((newim, newim[:, :, 0] * 0 + 1))
base = Image.fromarray((newim * 255).astype(np.uint8))
original_im = Image.fromarray((original_im * 255).astype(np.uint8))
enhanced_im = Image.fromarray((enhanced_im * 255).astype(np.uint8))
# make a blank image for the text, initialized to transparent text color
txt = Image.new("RGBA", base.size, (255, 255, 255, 0))
# get a font
# fnt = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeMonoBold.ttf", 30, encoding="unic")
fnt = ImageFont.load_default()
# get a drawing context
d = ImageDraw.Draw(txt)
ct = np.max(ndimage.label(b == 1)[0]) - 1
d.text((600, 10), "CNOs: {:d}".format(ct), font=fnt, fill=(255, 50, 50, 255))
out = Image.alpha_composite(base, txt)
return out, original_im, enhanced_im, ct
def treat_one_image(fn, growcut_path, original_png_path, enhanced_png_path):
file_list = []
growcut_list = []
# load data
im = load_im(fn)
# pyramid contrast
land = pyramid_contrast(im)
# detect objects
lab2 = segmentate(land, alpha=.75, beta=0.7)
# visualize
b = filter_objects(lab2, max_eccentricity=0.967, min_size=30, max_size=200, min_convex_coverage=0.5)
growcut_im, original_im, enhanced_im, ct = present(im, land, b)
file_name = os.path.split(fn)[1][0:-10]
original_im.save(os.path.join(original_png_path, file_name) + '.png')
enhanced_im.save(os.path.join(enhanced_png_path, file_name) + '.png')
growcut_im.save(os.path.join(growcut_path, file_name) + '.png')
return file_name, ct |