File size: 6,492 Bytes
89cbc4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#####################################################
### DOCUMENT PROCESSOR [MERGER]
#####################################################
# Jonathan Wang

# ABOUT:
# This project creates an app to chat with PDFs.

# This is the MERGER
# which defines how two lists with scores
# should be merged together into one list.
# (Useful for fusing things like keywords or textnodes)
#####################################################
## TODOS:
# We're looping through A/B more than necessary.

#####################################################
## IMPORTS:
from __future__ import annotations

from typing import TYPE_CHECKING, Sequence, TypeVar, Union

import numpy as np

if TYPE_CHECKING:
    from numpy.typing import NDArray

#####################################################
## CODE:

GenericType = TypeVar("GenericType")

### TODO(Jonathan Wang): Implement Maximum Marginal Relevance (MMR)
# https://en.wikipedia.org/wiki/Maximum_marginal_relevance
# def mmr(documents, query, scores, lambda_param=0.5):
#     """
#     Calculate Maximum Marginal Relevance (MMR) for a list of documents.

#     Parameters:
#     documents (list of np.array): List of document vectors.
#     query (np.array): Query vector.
#     scores (list of float): Relevance scores for each document.
#     lambda_param (float): Trade-off parameter between relevance and diversity.

#     Returns:
#     list of int: Indices of selected documents in order of selection.
#     """
#     selected = []
#     remaining = list(range(len(documents)))

#     while remaining:
#         if not selected:
#             # Select the document with the highest relevance score
#             idx = np.argmax(scores)
#         else:
#             # Calculate MMR for remaining documents
#             mmr_scores = []
#             for i in remaining:
#                 relevance = scores[i]
#                 diversity = max([np.dot(documents[i], documents[j]) for j in selected])
#                 mmr_score = lambda_param * relevance - (1 - lambda_param) * diversity
#                 mmr_scores.append(mmr_score)
#             idx = remaining[np.argmax(mmr_scores)]

#         selected.append(idx)
#         remaining.remove(idx)

#     return selected

def _merge_on_scores(
    a_list: Sequence[GenericType],
    b_list: Sequence[GenericType],
    a_scores_input: Sequence[float | np.float64 | None],
    b_scores_input: Sequence[float | np.float64 | None],
    use_distribution: bool = True,
    a_weight: float = 0.5,
    top_k: int = 5,
) -> Sequence[GenericType]:
    """
    Given two lists of elements with scores, fuse them together using "Distribution-Based Score Fusion".

    Elements which have high scores in both lists are given even higher ranking here.

    Inputs:
        a_list: list of elements for A
        a_scores: list of scores for each element in A. Assume higher is better. Share the same index.
        b_list: list of elements for B
        b_scores: list of scores for each element in B. Assume higher is better. Share the same index.
        use_distribution: Whether to fuse using Min-Max Scaling (FALSE) or Distribution Based Score Fusion (TRUE)

    Outputs:
        List: List of elements that passed the merge.
    """
    # Guard Clauses
    if ((len(a_list) != len(a_scores_input)) or (len(b_list) != len(b_scores_input))):
        msg = (
            f"""_merge_on_scores: Differing number of elements and scores!
a_list: {a_list}
a_scores: {a_scores_input}
b_list: {b_list}
b_scores: {b_scores_input}
"""
        )
        raise ValueError(msg)

    if (a_weight > 1 or a_weight < 0):
        msg = "_merge_on_scores: weight for the A list should be between 0 and 1."
        raise ValueError(msg)
    if (top_k < 0): # or top_k > :
        # TODO(Jonathan Wang): Find a nice way to get the number of unique elements in a list
        # where those elements are potentially unhashable AND unorderable.
        # I know about the n^2 solution with two lists and (if not in x), but it's a bit annoying.
        msg = "_merge_on_scores: top_k must be between 0 and the total number of elements."
        raise ValueError(msg)

    # 0. Convert to numpy arrays
    # NOTE: When using a SubQuestionQueryEngine, the subanswers are saved as NodesWithScores, but their score is None.
    # We want to filter these out, so we get citations when the two texts are very similar.
    a_scores: NDArray[np.float64] = np.array(a_scores_input, dtype=np.float64)
    b_scores: NDArray[np.float64] = np.array(b_scores_input, dtype=np.float64)

    # 1. Calculate mean of scores.
    a_mean = np.nanmean(a_scores)  # np.nan if empty
    b_mean = np.nanmean(b_scores)

    # 2. Calculate standard deviations
    a_stdev = np.nanstd(a_scores)
    b_stdev = np.nanstd(b_scores)

    # 3. Get minimum and maximum bands as 3std from mean
    # alternatively, use actual min-max scaling
    a_min = a_mean - 3 * a_stdev if use_distribution else np.nanmin(a_scores)
    a_max = a_mean + 3 * a_stdev if use_distribution else np.nanmax(a_scores)
    b_min = b_mean - 3 * b_stdev if use_distribution else np.nanmin(b_scores)
    b_max = b_mean + 3 * b_stdev if use_distribution else np.nanmax(b_scores)

    # 4. Rescale the distributions
    if (a_max > a_min):
        a_scores = np.array([
            ((x - a_min) / (a_max - a_min))
            for x in a_scores
        ], dtype=np.float64)
    if (b_max > b_min):
        b_scores = np.array([
            (x - b_min) / (b_max - b_min)
            for x in b_scores
        ], dtype=np.float64)

    # 5. Fuse the scores together
    full_dict: list[tuple[GenericType, float]] = []
    for index, element in enumerate(a_list):
        a_score = a_scores[index]
        if (element in b_list):
            # In both A and B. Fuse score.
            b_score = b_scores[b_list.index(element)]
            fused_score = a_weight * a_score + (1-a_weight) * b_score
            full_dict.append((element, fused_score))
        else:
            # Only in A.
            full_dict.append((element, a_weight * a_score))

    for index, element in enumerate(b_list):
        if (element not in a_list):
            b_score = b_scores[index]
            full_dict.append((element, (1-a_weight) * b_score))

    full_dict = sorted(full_dict, key=lambda item: item[1], reverse=True)
    output_list = [item[0] for item in full_dict]

    if (top_k >= len(full_dict)):
        return output_list

    # create final response object
    return output_list[:top_k]