Spaces:
Paused
Paused
File size: 10,729 Bytes
89cbc4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
#####################################################
### DOCUMENT PROCESSOR [CITATION]
#####################################################
# Jonathan Wang
# ABOUT:
# This project creates an app to chat with PDFs.
# This is the CITATION
# which adds citation information to the LLM response
#####################################################
## TODO Board:
# Investigate using LLM model weights with attention to determien citations.
# https://gradientscience.org/contextcite/
# https://github.com/MadryLab/context-cite/blob/main/context_cite/context_citer.py#L25
# https://github.com/MadryLab/context-cite/blob/main/context_cite/context_partitioner.py
# https://github.com/MadryLab/context-cite/blob/main/context_cite/solver.py
#####################################################
## IMPORTS
from __future__ import annotations
from collections import defaultdict
from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING
import warnings
import numpy as np
from llama_index.core.base.response.schema import RESPONSE_TYPE, Response
if TYPE_CHECKING:
from llama_index.core.schema import NodeWithScore
# Own Modules
from merger import _merge_on_scores
from rapidfuzz import fuzz, process, utils
# Lazy Loading:
# from nltk import sent_tokenize # noqa: ERA001
#####################################################
## CODE
class CitationBuilder:
"""Class that builds citations from responses."""
text_splitter: Callable[[str], list[str]]
def __init__(self, text_splitter: Callable[[str], list[str]] | None = None) -> None:
if not text_splitter:
from nltk import sent_tokenize
text_splitter = sent_tokenize
self.text_splitter = text_splitter
@classmethod
def class_name(cls) -> str:
return "CitationBuilder"
def convert_to_response(self, input_response: RESPONSE_TYPE) -> Response:
# Convert all other response types into the baseline response
# Otherwise, we won't have the full response text generated.
if not isinstance(input_response, Response):
response = input_response.get_response()
if isinstance(response, Response):
return response
else:
# TODO(Jonathan Wang): Handle async responses with Coroutines
msg = "Expected Response object, got Coroutine"
raise TypeError(msg)
else:
return input_response
def find_nearest_whitespace(
self,
input_text: str,
input_index: int,
right_to_left: bool=False
) -> int:
"""Given a sting and an index, find the index of whitespace closest to the string."""
if (input_index < 0 or input_index >= len(input_text)):
msg = "find_nearest_whitespace: index beyond string."
raise ValueError(msg)
find_text = ""
if (right_to_left):
find_text = input_text[:input_index]
for index, char in enumerate(reversed(find_text)):
if (char.isspace()):
return (len(find_text)-1 - index)
return (0)
else:
find_text = input_text[input_index:]
for index, char in enumerate(find_text):
if (char.isspace()):
return (input_index + index)
return (len(input_text))
def get_citations(
self,
input_response: RESPONSE_TYPE,
citation_threshold: int = 70,
citation_len: int = 128
) -> Response:
response = self.convert_to_response(input_response)
if not response.response or not response.source_nodes:
return response
# Get current response text:
response_text = response.response
source_nodes = response.source_nodes
# 0. Get candidate nodes for citation.
# Fuzzy match each source node text against the respone text.
source_texts: dict[str, list[NodeWithScore]] = defaultdict(list)
for node in source_nodes:
if (
(len(getattr(node.node, "text", "")) > 0) and
(len(node.node.metadata) > 0)
): # filter out non-text nodes and intermediate nodes from SubQueryQuestionEngine
source_texts[node.node.text].append(node) # type: ignore
fuzzy_matches = process.extract(
response_text,
list(source_texts.keys()),
scorer=fuzz.partial_ratio,
processor=utils.default_process,
score_cutoff=max(10, citation_threshold - 10)
)
# Convert extracted matches of form (Match, Score, Rank) into scores for all source_texts.
if fuzzy_matches:
fuzzy_texts, _, _ = zip(*fuzzy_matches)
fuzzy_nodes = [source_texts[text][0] for text in fuzzy_texts]
else:
return response
# 1. Combine fuzzy score and source text semantic/reranker score.
# NOTE: for our merge here, we value the nodes with strong fuzzy text matching over other node types.
cited_nodes = _merge_on_scores(
a_list=fuzzy_nodes,
b_list=source_nodes, # same nodes, different scores (fuzzy vs semantic/bm25/reranker)
a_scores_input=[getattr(node, "score", np.nan) for node in fuzzy_nodes],
b_scores_input=[getattr(node, "score", np.nan) for node in source_nodes],
a_weight=0.85, # we want to heavily prioritize the fuzzy text for matches
top_k=3 # maximum of three source options.
)
# 2. Add cited nodes text to the response text, and cited nodes as metadata.
# For each sentence in the response, if there is a match in the source text, add a citation tag.
response_sentences = self.text_splitter(response_text)
output_text = ""
output_citations = ""
citation_tag = 0
for response_sentence in response_sentences:
# Get fuzzy citation at sentence level
best_alignment = None
best_score = 0
best_node = None
for _, source_node in enumerate(source_nodes):
source_node_text = getattr(source_node.node, "text", "")
new_alignment = fuzz.partial_ratio_alignment(
response_sentence,
source_node_text,
processor=utils.default_process, score_cutoff=citation_threshold
)
new_score = 0.0
if (new_alignment is not None and (new_alignment.src_end - new_alignment.src_start) > 0):
new_score = fuzz.ratio(
source_node_text[new_alignment.src_start:new_alignment.src_end],
response_sentence[new_alignment.dest_start:new_alignment.dest_end],
processor=utils.default_process
)
new_score = new_score * (new_alignment.src_end - new_alignment.src_start) / float(len(response_sentence))
if (new_score > best_score):
best_alignment = new_alignment
best_score = new_score
best_node = source_node
if (best_score <= 0 or best_node is None or best_alignment is None):
# No match
output_text += response_sentence
continue
# Add citation tag to text
citation_tag_position = self.find_nearest_whitespace(response_sentence, best_alignment.dest_start, right_to_left=True)
output_text += response_sentence[:citation_tag_position] # response up to the quote
output_text += f" [{citation_tag}] " # add citation tag
output_text += response_sentence[citation_tag_position:] # reposnse after the quote
# Add citation text to citations
citation = getattr(best_node.node, "text", "")
citation_margin = round((citation_len - (best_alignment.src_end - best_alignment.src_start)) / 2)
nearest_whitespace_pre = self.find_nearest_whitespace(citation, max(0, best_alignment.src_start), right_to_left=True)
nearest_whitespace_post = self.find_nearest_whitespace(citation, min(len(citation)-1, best_alignment.src_end), right_to_left=False)
nearest_whitespace_prewindow = self.find_nearest_whitespace(citation, max(0, nearest_whitespace_pre - citation_margin), right_to_left=True)
nearest_whitespace_postwindow = self.find_nearest_whitespace(citation, min(len(citation)-1, nearest_whitespace_post + citation_margin), right_to_left=False)
citation_text = (
citation[nearest_whitespace_prewindow+1: nearest_whitespace_pre+1]
+ "|||||"
+ citation[nearest_whitespace_pre+1:nearest_whitespace_post]
+ "|||||"
+ citation[nearest_whitespace_post:nearest_whitespace_postwindow]
+ f"β¦ <<{best_node.node.metadata.get('name', '')}, Page(s) {best_node.node.metadata.get('page_number', '')}>>"
)
output_citations += f"[{citation_tag}]: {citation_text}\n\n"
citation_tag += 1
# Create output
if response.metadata is not None:
# NOTE: metadata is certainly existant by now, but the schema allows None...
response.metadata["cited_nodes"] = cited_nodes
response.metadata["citations"] = output_citations
response.response = output_text # update response to include citation tags
return response
def add_citations_to_response(self, input_response: Response) -> Response:
if not hasattr(input_response, "metadata"):
msg = "Input response does not have metadata."
raise ValueError(msg)
elif input_response.metadata is None or "citations" not in input_response.metadata:
warnings.warn("Input response does not have citations.", stacklevel=2)
input_response = self.get_citations(input_response)
# Add citation text to response
if (hasattr(input_response, "metadata") and input_response.metadata.get("citations", "") != ""):
input_response.response = (
input_response.response
+ "\n\n----- CITATIONS -----\n\n"
+ input_response.metadata.get('citations', "")
) # type: ignore
return input_response
def __call__(self, input_response: RESPONSE_TYPE, *args: Any, **kwds: Any) -> Response:
return self.get_citations(input_response, *args, **kwds)
def get_citation_builder() -> CitationBuilder:
return CitationBuilder() |