Spaces:
Build error
Build error
File size: 12,856 Bytes
bd02426 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import os
from typing import List, Optional, Tuple
import ipyleaflet as leaf
import ipywidgets
import matplotlib as mpl
import numpy as np
import pandas as pd
import plotly.figure_factory as ff
import plotly.graph_objs as go
from htmltools import head_content
from ipyleaflet import basemaps
from matplotlib import cm
from shiny import *
from shiny.types import SilentException
from shinywidgets import *
color_palette = cm.get_cmap("viridis", 10)
# TODO: how to handle nas (pd.isna)?
def col_numeric(domain: Tuple[float, float], na_color: str = "#808080"):
rescale = mpl.colors.Normalize(domain[0], domain[1])
def _(vals: List[float]) -> List[str]:
cols = color_palette(rescale(vals))
return [mpl.colors.to_hex(v) for v in cols]
return _
# TODO: when this issue is fixed, we won't have to sample anymore
# https://github.com/rstudio/prism/issues/119
app_dir = os.path.dirname(__file__)
allzips = pd.read_csv(os.path.join(app_dir, "superzip.csv")).sample(
n=10000, random_state=42
)
# ------------------------------------------------------------------------
# Define user interface
# ------------------------------------------------------------------------
vars = {
"Score": "Overall score",
"College": "% college educated",
"Income": "Median income",
"Population": "Population",
}
css = open(os.path.join(app_dir, "styles.css"), "r").readlines()
ui_map = ui.TagList(
output_widget("map", width="100%", height="100%"),
ui.panel_fixed(
ui.h2("SuperZIP explorer"),
ui.input_select("variable", "Heatmap variable", vars),
output_widget("density_score", height="200px"),
output_widget("density_college", height="200px"),
output_widget("density_income", height="200px"),
output_widget("density_pop", height="200px"),
id="controls",
class_="panel panel-default",
width="330px",
height="auto",
draggable=True,
top="60px",
left="auto",
right="20px",
bottom="auto",
),
ui.div(
"Data compiled for ",
ui.tags.em("Coming Apart: The State of White America, 1960-2010"),
" by Charles Murray (Crown Forum, 2012).",
id="cite",
),
)
app_ui = ui.page_navbar(
ui.nav(
"Interactive map",
ui.div(head_content(ui.tags.style(css)), ui_map, class_="outer"),
),
ui.nav(
"Data explorer",
ui.row(
ui.column(3, ui.output_ui("data_intro")),
ui.column(9, output_widget("data", height="100%")),
),
ui.row(
ui.column(2),
ui.column(8, output_widget("table_map")),
ui.column(2),
),
),
title="Superzip",
)
# ------------------------------------------------------------------------
# non-reactive helper functions
# ------------------------------------------------------------------------
def density_plot(
overall: pd.DataFrame,
in_bounds: pd.DataFrame,
var: str,
selected: Optional[pd.DataFrame] = None,
title: Optional[str] = None,
showlegend: bool = False,
):
dat = [overall[var], in_bounds[var]]
if var == "Population":
dat = [np.log10(x) for x in dat]
# Create distplot with curve_type set to 'normal'
fig = ff.create_distplot(
dat,
["Overall", "In bounds"],
colors=["black", "#6DCD59"],
show_rug=False,
show_hist=False,
)
# Remove tick labels
fig.update_layout(
# hovermode="x",
height=200,
showlegend=showlegend,
margin=dict(l=0, r=0, t=0, b=0),
legend=dict(x=0.5, y=1, orientation="h", xanchor="center", yanchor="bottom"),
xaxis=dict(
title=title if title is not None else var,
showgrid=False,
showline=False,
zeroline=False,
),
yaxis=dict(
showgrid=False,
showline=False,
showticklabels=False,
zeroline=False,
),
)
# hovermode itsn't working properly when dynamically, absolutely positioned
for _, trace in enumerate(fig.data):
trace.update(hoverinfo="none")
if selected is not None:
x = selected[var].tolist()[0]
if var == "Population":
x = np.log10(x)
fig.add_shape(
type="line",
x0=x,
x1=x,
y0=0,
y1=1,
yref="paper",
line=dict(width=1, dash="dashdot", color="gray"),
)
return go.FigureWidget(data=fig.data, layout=fig.layout)
def create_map(**kwargs):
map = leaf.Map(
center=(37.45, -88.85),
zoom=4,
scroll_wheel_zoom=True,
attribution_control=False,
**kwargs,
)
map.add_layer(leaf.basemap_to_tiles(basemaps.CartoDB.DarkMatter))
return map
# ------------------------------------------------------------------------
# Server logic
# ------------------------------------------------------------------------
def server(input: Inputs, output: Outputs, session: Session):
# ------------------------------------------------------------------------
# Main map logic
# ------------------------------------------------------------------------
map = create_map(layout=ipywidgets.Layout(width="100%", height="100%"))
register_widget("map", map)
# Keeps track of whether we're showing markers (zoomed in) or heatmap (zoomed out)
show_markers = reactive.Value(False)
@reactive.Effect
def _():
nzips = zips_in_bounds().shape[0]
show_markers.set(nzips < 200)
# When the variable changes, either update marker colors or redraw the heatmap
@reactive.Effect
@reactive.event(input.variable)
def _():
zips = zips_in_bounds()
if not show_markers():
remove_heatmap()
map.add_layer(layer_heatmap())
else:
zip_colors = dict(zip(zips.Zipcode, zips_marker_color()))
for x in map.layers:
if x.name.startswith("marker-"):
zipcode = int(x.name.split("-")[1])
if zipcode in zip_colors:
x.color = zip_colors[zipcode]
# When bounds change, maybe add new markers
@reactive.Effect
@reactive.event(lambda: zips_in_bounds())
def _():
if not show_markers():
return
zips = zips_in_bounds()
if zips.empty:
return
# Be careful not to create markers until we know we need to add it
current_markers = set(
[m.name for m in map.layers if m.name.startswith("marker-")]
)
zips["Color"] = zips_marker_color()
for _, row in zips.iterrows():
if ("marker-" + str(row.Zipcode)) not in current_markers:
map.add_layer(create_marker(row, color=row.Color))
# Change from heatmap to markers: remove the heatmap and show markers
# Change from markers to heatmap: hide the markers and add the heatmap
@reactive.Effect
@reactive.event(show_markers)
def _():
if show_markers():
map.remove_layer(layer_heatmap())
else:
map.add_layer(layer_heatmap())
opacity = 0.6 if show_markers() else 0.0
for x in map.layers:
if x.name.startswith("marker-"):
x.fill_opacity = opacity
x.opacity = opacity
@reactive.Calc
def zips_in_bounds():
bb = reactive_read(map, "bounds")
if not bb:
# TODO: this should really be `raise SilentException`...why doesn't it work?
# return pd.DataFrame()
raise SilentException
lats = (bb[0][0], bb[1][0])
lons = (bb[0][1], bb[1][1])
return allzips[
(allzips.Lat >= lats[0])
& (allzips.Lat <= lats[1])
& (allzips.Long >= lons[0])
& (allzips.Long <= lons[1])
]
@reactive.Calc
def zips_marker_color():
vals = allzips[input.variable()]
domain = (vals.min(), vals.max())
vals_in_bb = zips_in_bounds()[input.variable()]
return col_numeric(domain)(vals_in_bb)
@reactive.Calc
def layer_heatmap():
locs = allzips[["Lat", "Long", input.variable()]].to_numpy()
return leaf.Heatmap(
locations=locs.tolist(),
name="heatmap",
# R> cat(paste0(round(scales::rescale(log10(1:10), to = c(0.05, 1)), 2), ": '", viridis::viridis(10), "'"), sep = "\n")
gradient={
0.05: "#440154",
0.34: "#482878",
0.5: "#3E4A89",
0.62: "#31688E",
0.71: "#26828E",
0.79: "#1F9E89",
0.85: "#35B779",
0.91: "#6DCD59",
0.96: "#B4DE2C",
1: "#FDE725",
},
)
def remove_heatmap():
for x in map.layers:
if x.name == "heatmap":
map.remove_layer(x)
zip_selected = reactive.Value(None)
@output(id="density_score")
@render_widget
def _():
return density_plot(
allzips,
zips_in_bounds(),
selected=zip_selected(),
var="Score",
title="Overall Score",
showlegend=True,
)
@output(id="density_income")
@render_widget
def _():
return density_plot(
allzips, zips_in_bounds(), selected=zip_selected(), var="Income"
)
@output(id="density_college")
@render_widget
def _():
return density_plot(
allzips, zips_in_bounds(), selected=zip_selected(), var="College"
)
@output(id="density_pop")
@render_widget
def _():
return density_plot(
allzips,
zips_in_bounds(),
selected=zip_selected(),
var="Population",
title="log10(Population)",
)
def create_marker(row, **kwargs):
m = leaf.CircleMarker(
location=(row.Lat, row.Long),
popup=ipywidgets.HTML(
f"""
{row.City}, {row.State} ({row.Zipcode})<br/>
{row.Score:.1f} overall score<br/>
{row.College:.1f}% college educated<br/>
${row.Income:.0f}k median income<br/>
{row.Population} people<br/>
"""
),
name=f"marker-{row.Zipcode}",
**kwargs,
)
def _on_click(**kwargs):
coords = kwargs["coordinates"]
idx = (allzips.Lat == coords[0]) & (allzips.Long == coords[1])
zip_selected.set(allzips[idx])
m.on_click(_on_click)
return m
@output(id="data_intro")
@render.ui
def _():
zips = zips_in_bounds()
md = ui.markdown(
f"""
{zips.shape[0]} zip codes are currently within the map's viewport, and amongst them:
* {100*zips.Superzip.mean():.1f}% are superzips
* Mean income is ${zips.Income.mean():.0f}k π°
* Mean population is {zips.Population.mean():.0f} π¨π½π©π½π¦π½
* Mean college educated is {zips.College.mean():.1f}% π
Use the filter controls on the table's columns to drill down further or
click on a row to
""",
)
return ui.div(md, class_="my-3 lead")
selected_table_row = reactive.Value(pd.DataFrame())
@output(id="data")
@render_widget
def _():
import qgrid
dat = zips_in_bounds().drop(["Lat", "Long", "Color"], axis=1, errors="ignore")
w = qgrid.show_grid(
dat,
grid_options={"editable": False},
column_definitions={"index": {"maxWidth": 0, "minWidth": 0, "width": 0}},
)
def _on_change(event, widget):
idx = event["new"][0]
selected_table_row.set(zips_in_bounds().iloc[[idx]])
w.on("selection_changed", _on_change)
return w
table_map = create_map()
@output(id="table_map")
@render_widget
def _():
if selected_table_row().empty:
return None
else:
return table_map
# TODO: currently there is a bug where clicking the popup causes an error,
# but I _think_ this'll get fixed in the next release of ipywidgets/ipyleaflet
# https://github.com/jupyter-widgets/ipywidgets/issues/3384
@reactive.Effect
@reactive.event(selected_table_row)
def _():
for x in table_map.layers:
if x.name.startswith("marker"):
table_map.remove_layer(x)
for _, row in selected_table_row().iterrows():
table_map.add_layer(create_marker(row))
app = App(app_ui, server)
|