File size: 4,587 Bytes
b68324c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9cfa43
b68324c
 
 
 
 
 
 
f9cfa43
b68324c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9cfa43
 
 
 
 
 
b68324c
 
 
 
 
 
 
 
 
 
 
 
f9cfa43
 
 
 
 
b68324c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9cfa43
b68324c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d5d14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python

from __future__ import annotations

import os
import random
import tempfile

import gradio as gr
import imageio
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler

DESCRIPTION = 'This space is an API service meant to be used by VideoChain and VideoQuest.\nWant to use this space for yourself? Please use the original code: [https://huggingface.co/spaces/hysts/zeroscope-v2](https://huggingface.co/spaces/hysts/zeroscope-v2)'
if not torch.cuda.is_available():
    DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>'

MAX_NUM_FRAMES = int(os.getenv('MAX_NUM_FRAMES', '200'))
DEFAULT_NUM_FRAMES = min(MAX_NUM_FRAMES,
                         int(os.getenv('DEFAULT_NUM_FRAMES', '24')))
MAX_SEED = np.iinfo(np.int32).max
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')

if torch.cuda.is_available():
    pipe = DiffusionPipeline.from_pretrained('cerspense/zeroscope_v2_576w',
                                             torch_dtype=torch.float16)
    pipe.enable_model_cpu_offload()
else:
    pipe = DiffusionPipeline.from_pretrained('cerspense/zeroscope_v2_576w')
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_vae_slicing()


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def to_video(frames: list[np.ndarray], fps: int) -> str:
    out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
    writer = imageio.get_writer(out_file.name, format='FFMPEG', fps=fps)
    for frame in frames:
        writer.append_data(frame)
    writer.close()
    return out_file.name


@spaces.GPU
def generate(prompt: str, seed: int, num_frames: int,
             num_inference_steps: int,
             secret_token: str = '') -> str:
    if secret_token != SECRET_TOKEN:
        raise gr.Error(
            f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
        
    generator = torch.Generator().manual_seed(seed)
    frames = pipe(prompt,
                  num_inference_steps=num_inference_steps,
                  num_frames=num_frames,
                  width=576,
                  height=320,
                  generator=generator).frames
    return to_video(frames, 8)


with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)
    secret_token = gr.Text(
        label='Secret Token',
        max_lines=1,
        placeholder='Enter your secret token',
    )
    with gr.Box():
        with gr.Row():
            prompt = gr.Text(label='Prompt',
                             show_label=False,
                             max_lines=1,
                             placeholder='Enter your prompt',
                             container=False)
            run_button = gr.Button('Generate video', scale=0)
        result = gr.Video(label='Result', show_label=False)
        with gr.Accordion('Advanced options', open=False):
            seed = gr.Slider(label='Seed',
                             minimum=0,
                             maximum=MAX_SEED,
                             step=1,
                             value=0)
            randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
            num_frames = gr.Slider(
                label='Number of frames',
                minimum=24,
                maximum=MAX_NUM_FRAMES,
                step=1,
                value=24,
                info=
                'Note that the content of the video also changes when you change the number of frames.'
            )
            num_inference_steps = gr.Slider(label='Number of inference steps',
                                            minimum=10,
                                            maximum=50,
                                            step=1,
                                            value=25)

    inputs = [
        prompt,
        seed,
        num_frames,
        num_inference_steps,
        secret_token,
    ]

    prompt.submit(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=result,
        api_name='run',
    )
    run_button.click(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=result,
    )
demo.queue(max_size=3).launch()