Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 56,788 Bytes
5acd9c3 59e0f6a 5acd9c3 59e0f6a 5acd9c3 59e0f6a 5acd9c3 59e0f6a 5ca5f4b 59e0f6a 5acd9c3 59e0f6a 5acd9c3 6a787b8 5acd9c3 7ab27ea 5acd9c3 7ab27ea 5acd9c3 7ab27ea 5acd9c3 7ab27ea 5acd9c3 6a787b8 5acd9c3 6c71972 e15d9f5 6c71972 4b590f9 e15d9f5 4b590f9 12331f3 6c71972 e15d9f5 5acd9c3 e15d9f5 5acd9c3 83f2577 5acd9c3 6c71972 6a787b8 5acd9c3 6c71972 e15d9f5 6c71972 d5e94b5 6c71972 e15d9f5 6c71972 e15d9f5 6c71972 e15d9f5 6c71972 e15d9f5 6c71972 5acd9c3 6c71972 e15d9f5 6c71972 e15d9f5 6c71972 e15d9f5 6c71972 5acd9c3 2e813e6 5acd9c3 6a787b8 5acd9c3 6a787b8 5acd9c3 d7edecf 6a787b8 d7edecf a425931 d7edecf a425931 d7edecf a425931 d7edecf a425931 d7edecf 6a787b8 d7edecf a425931 d7edecf a425931 d7edecf a425931 d7edecf a425931 d7edecf a425931 d7edecf a425931 d7edecf a425931 d7edecf 5acd9c3 e15d9f5 5acd9c3 2e813e6 7a46537 2e813e6 fe68f22 2e813e6 5acd9c3 3cc7c13 7a46537 3cc7c13 4b590f9 3cc7c13 4b590f9 7a46537 5acd9c3 2e813e6 fe68f22 2e813e6 fe68f22 2e813e6 7a46537 2e813e6 5acd9c3 2e813e6 5acd9c3 2e813e6 5acd9c3 2e813e6 5acd9c3 2e813e6 3cc7c13 5acd9c3 2e813e6 5acd9c3 2e813e6 5acd9c3 2e813e6 5acd9c3 59e0f6a 2e813e6 59e0f6a 2e813e6 59e0f6a 2e813e6 59e0f6a 2e813e6 59e0f6a 2e813e6 59e0f6a 2e813e6 59e0f6a 3cc7c13 59e0f6a 2e813e6 59e0f6a 2e813e6 59e0f6a 2e813e6 59e0f6a 2e813e6 3cc7c13 2e813e6 59e0f6a 2e813e6 59e0f6a 2e813e6 59e0f6a 2e813e6 59e0f6a 2e813e6 fe68f22 59e0f6a 5acd9c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 |
import logging
import os
import io
import re
import base64
import uuid
from typing import Dict, Any, Optional, List, Literal
from dataclasses import dataclass
from asyncio import Lock, Queue
import asyncio
import time
import datetime
from contextlib import asynccontextmanager
from collections import defaultdict
from aiohttp import web, ClientSession
from huggingface_hub import InferenceClient, HfApi
from gradio_client import Client
import random
import yaml
import json
from api_config import *
# User role type
UserRole = Literal['anon', 'normal', 'pro', 'admin']
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def generate_seed():
"""Generate a random positive 32-bit integer seed."""
return random.randint(0, 2**32 - 1)
def sanitize_yaml_response(response_text: str) -> str:
"""
Sanitize and format AI response into valid YAML.
Returns properly formatted YAML string.
"""
response_text = response_text.split("```")[0]
# Remove any markdown code block indicators and YAML document markers
clean_text = re.sub(r'```yaml|```|---|\.\.\.$', '', response_text.strip())
# Split into lines and process each line
lines = clean_text.split('\n')
sanitized_lines = []
current_field = None
for line in lines:
stripped = line.strip()
if not stripped:
continue
# Handle field starts
if stripped.startswith('title:') or stripped.startswith('description:'):
# Ensure proper YAML format with space after colon and proper quoting
field_name = stripped.split(':', 1)[0]
field_value = stripped.split(':', 1)[1].strip().strip('"\'')
# Quote the value if it contains special characters
if any(c in field_value for c in ':[]{},&*#?|-<>=!%@`'):
field_value = f'"{field_value}"'
sanitized_lines.append(f"{field_name}: {field_value}")
current_field = field_name
elif stripped.startswith('tags:'):
sanitized_lines.append('tags:')
current_field = 'tags'
elif stripped.startswith('-') and current_field == 'tags':
# Process tag values
tag = stripped[1:].strip().strip('"\'')
if tag:
# Clean and format tag
tag = re.sub(r'[^\x00-\x7F]+', '', tag) # Remove non-ASCII
tag = re.sub(r'[^a-zA-Z0-9\s-]', '', tag) # Keep only alphanumeric and hyphen
tag = tag.strip().lower().replace(' ', '-')
if tag:
sanitized_lines.append(f" - {tag}")
elif current_field in ['title', 'description']:
# Handle multi-line title/description continuation
value = stripped.strip('"\'')
if value:
# Append to previous line
prev = sanitized_lines[-1]
sanitized_lines[-1] = f"{prev} {value}"
# Ensure the YAML has all required fields
required_fields = {'title', 'description', 'tags'}
found_fields = {line.split(':')[0].strip() for line in sanitized_lines if ':' in line}
for field in required_fields - found_fields:
if field == 'tags':
sanitized_lines.extend(['tags:', ' - default'])
else:
sanitized_lines.append(f'{field}: "No {field} provided"')
return '\n'.join(sanitized_lines)
@dataclass
class Endpoint:
id: int
url: str
busy: bool = False
last_used: float = 0
error_count: int = 0
error_until: float = 0 # Timestamp until which this endpoint is considered in error state
class EndpointManager:
def __init__(self):
self.endpoints: List[Endpoint] = []
self.lock = Lock()
self.initialize_endpoints()
self.last_used_index = -1 # Track the last used endpoint for round-robin
def initialize_endpoints(self):
"""Initialize the list of endpoints"""
for i, url in enumerate(VIDEO_ROUND_ROBIN_ENDPOINT_URLS):
endpoint = Endpoint(id=i + 1, url=url)
self.endpoints.append(endpoint)
def _get_next_free_endpoint(self):
"""Get the next available non-busy endpoint, or oldest endpoint if all are busy"""
current_time = time.time()
# First priority: Get any non-busy and non-error endpoint
free_endpoints = [
ep for ep in self.endpoints
if not ep.busy and current_time > ep.error_until
]
if free_endpoints:
# Return the least recently used free endpoint
return min(free_endpoints, key=lambda ep: ep.last_used)
# Second priority: If all busy/error, use round-robin but skip error endpoints
tried_count = 0
next_index = self.last_used_index
while tried_count < len(self.endpoints):
next_index = (next_index + 1) % len(self.endpoints)
tried_count += 1
# If endpoint is not in error state, use it
if current_time > self.endpoints[next_index].error_until:
self.last_used_index = next_index
return self.endpoints[next_index]
# If all endpoints are in error state, use the one with earliest error expiry
self.last_used_index = next_index
return min(self.endpoints, key=lambda ep: ep.error_until)
@asynccontextmanager
async def get_endpoint(self, max_wait_time: int = 10):
"""Get the next available endpoint using a context manager"""
start_time = time.time()
endpoint = None
try:
while True:
if time.time() - start_time > max_wait_time:
raise TimeoutError(f"Could not acquire an endpoint within {max_wait_time} seconds")
async with self.lock:
# Get the next available endpoint using our selection strategy
endpoint = self._get_next_free_endpoint()
# Mark it as busy
endpoint.busy = True
endpoint.last_used = time.time()
#logger.info(f"Using endpoint {endpoint.id} (busy: {endpoint.busy}, last used: {endpoint.last_used})")
break
yield endpoint
finally:
if endpoint:
async with self.lock:
endpoint.busy = False
endpoint.last_used = time.time()
# We don't need to put back into queue - our strategy now picks directly from the list
class ChatRoom:
def __init__(self):
self.messages = []
self.connected_clients = set()
self.max_history = 100
def add_message(self, message):
self.messages.append(message)
if len(self.messages) > self.max_history:
self.messages.pop(0)
def get_recent_messages(self, limit=50):
return self.messages[-limit:]
class VideoGenerationAPI:
def __init__(self):
self.inference_client = InferenceClient(token=HF_TOKEN)
self.hf_api = HfApi(token=HF_TOKEN)
self.endpoint_manager = EndpointManager()
self.active_requests: Dict[str, asyncio.Future] = {}
self.chat_rooms = defaultdict(ChatRoom)
self.video_events: Dict[str, List[Dict[str, Any]]] = defaultdict(list)
self.event_history_limit = 50
# Cache for user roles to avoid repeated API calls
self.user_role_cache: Dict[str, Dict[str, Any]] = {}
# Cache expiration time (10 minutes)
self.cache_expiration = 600
def _get_inference_client(self, llm_config: Optional[dict] = None) -> InferenceClient:
"""
Get an InferenceClient configured with the provided LLM settings.
Priority order for API keys:
1. Provider-specific API key (if provided)
2. User's HF token (if provided)
3. Server's HF token (only if ALLOW_USING_SERVER_HF_API_KEY_FOR_LLM_CALLS is true)
4. Raise exception if no valid key is available
"""
if not llm_config:
return self.inference_client
provider = llm_config.get('provider', '').lower()
model = llm_config.get('model', '')
api_key = llm_config.get('api_key', '') # Provider-specific API key
hf_token = llm_config.get('hf_token', '') # User's HF token
# If no provider or model specified, use default
if not provider or not model:
return self.inference_client
try:
# Map frontend provider names to HF InferenceClient provider names
provider_mapping = {
'openai': 'openai',
'anthropic': 'anthropic',
'google': 'google',
'cohere': 'cohere',
'together': 'together',
'huggingface': None, # Use HF directly without provider
'builtin': None # Use server's default model
}
hf_provider = provider_mapping.get(provider)
# Handle built-in provider first (uses server's HF token and default model)
if provider == 'builtin':
if ALLOW_USING_SERVER_HF_API_KEY_FOR_LLM_CALLS and HF_TOKEN:
# Use server's default model from HF_TEXT_MODEL
return InferenceClient(
model=TEXT_MODEL if TEXT_MODEL else model,
token=HF_TOKEN
)
else:
raise ValueError("Built-in provider is not available. Server is not configured to allow fallback to server API key.")
# Priority 1: Use provider-specific API key if available
if api_key and hf_provider:
return InferenceClient(
provider=hf_provider,
model=model,
api_key=api_key
)
elif api_key and provider == 'huggingface':
# For HuggingFace provider with an API key (treat it as HF token)
return InferenceClient(
model=model,
token=api_key
)
# Priority 2: Use user's HF token if available
if hf_token:
return InferenceClient(
model=model,
token=hf_token
)
# Priority 3: Use server's HF token only if explicitly allowed
if ALLOW_USING_SERVER_HF_API_KEY_FOR_LLM_CALLS and HF_TOKEN:
logger.warning(f"Using server's HF token for {provider} model {model} - no user API key provided")
return InferenceClient(
model=model,
token=HF_TOKEN
)
# No valid API key available
if provider == 'huggingface':
raise ValueError("No API key provided. Please provide your Hugging Face API key.")
else:
raise ValueError(f"No API key provided for {provider}. Please provide either a {provider} API key or your Hugging Face API key.")
except ValueError:
# Re-raise ValueError for missing API keys
raise
except Exception as e:
logger.error(f"Error creating InferenceClient with config {llm_config}: {e}")
# For other errors, fallback to default client only if server token is allowed
if ALLOW_USING_SERVER_HF_API_KEY_FOR_LLM_CALLS:
return self.inference_client
else:
raise
except Exception as e:
logger.error(f"Error creating InferenceClient with config {llm_config}: {e}")
# Fallback to default client
return self.inference_client
async def _generate_text(self, prompt: str, llm_config: Optional[dict] = None,
max_new_tokens: int = 200, temperature: float = 0.7,
model_override: Optional[str] = None) -> str:
"""
Helper method to generate text using the appropriate client and configuration.
Args:
prompt: The prompt to generate text from
llm_config: Optional LLM configuration dict
max_new_tokens: Maximum number of new tokens to generate
temperature: Temperature for generation
model_override: Optional model to use instead of the one in llm_config
Returns:
Generated text string
"""
# Get the appropriate client
client = self._get_inference_client(llm_config)
# For third-party providers, we don't need to specify model in text_generation
# as it's already configured in the client
if llm_config and llm_config.get('provider') != 'huggingface':
response = await asyncio.get_event_loop().run_in_executor(
None,
lambda: client.text_generation(
prompt,
max_new_tokens=max_new_tokens,
temperature=temperature
)
)
else:
# For HuggingFace models, we need to specify the model
if model_override:
model_to_use = model_override
elif llm_config:
model_to_use = llm_config.get('model', TEXT_MODEL)
else:
model_to_use = TEXT_MODEL
response = await asyncio.get_event_loop().run_in_executor(
None,
lambda: client.text_generation(
prompt,
model=model_to_use,
max_new_tokens=max_new_tokens,
temperature=temperature
)
)
return response
def _add_event(self, video_id: str, event: Dict[str, Any]):
"""Add an event to the video's history and maintain the size limit"""
events = self.video_events[video_id]
events.append(event)
if len(events) > self.event_history_limit:
events.pop(0)
async def validate_user_token(self, token: str) -> UserRole:
"""
Validates a Hugging Face token and determines the user's role.
Returns one of:
- 'anon': Anonymous user (no token or invalid token)
- 'normal': Standard Hugging Face user
- 'pro': Hugging Face Pro user
- 'admin': Admin user (username in ADMIN_ACCOUNTS)
"""
# If no token is provided, the user is anonymous
if not token:
return 'anon'
# Check if we have a cached result for this token
current_time = time.time()
if token in self.user_role_cache:
cached_data = self.user_role_cache[token]
# If the cache is still valid
if current_time - cached_data['timestamp'] < self.cache_expiration:
logger.info(f"Using cached user role: {cached_data['role']}")
return cached_data['role']
# No valid cache, need to check the token with the HF API
try:
# Use HF API to validate the token and get user info
logger.info("Validating Hugging Face token...")
# Run in executor to avoid blocking the event loop
user_info = await asyncio.get_event_loop().run_in_executor(
None,
lambda: self.hf_api.whoami(token=token)
)
# Handle both object and dict response formats from whoami
username = user_info.get('name') if isinstance(user_info, dict) else getattr(user_info, 'name', None)
is_pro = user_info.get('is_pro') if isinstance(user_info, dict) else getattr(user_info, 'is_pro', False)
if not username:
logger.error(f"Could not determine username from user_info: {user_info}")
return 'anon'
logger.info(f"Token valid for user: {username}")
# Determine the user role based on the information
user_role: UserRole
# Check if the user is an admin
if username in ADMIN_ACCOUNTS:
user_role = 'admin'
# Check if the user has a pro account
elif is_pro:
user_role = 'pro'
else:
user_role = 'normal'
# Cache the result
self.user_role_cache[token] = {
'role': user_role,
'timestamp': current_time,
'username': username
}
return user_role
except Exception as e:
logger.error(f"Failed to validate Hugging Face token: {str(e)}")
# If validation fails, the user is treated as anonymous
return 'anon'
async def download_video(self, url: str) -> bytes:
"""Download video file from URL and return bytes"""
async with ClientSession() as session:
async with session.get(url) as response:
if response.status != 200:
raise Exception(f"Failed to download video: HTTP {response.status}")
return await response.read()
async def search_video(self, query: str, attempt_count: int = 0, llm_config: Optional[dict] = None) -> Optional[dict]:
"""Generate a single search result using HF text generation"""
# Maximum number of attempts to generate a description without placeholder tags
max_attempts = 2
current_attempt = attempt_count
# Use a random temperature between 0.68 and 0.72 to generate more diverse results
# and prevent duplicate results from successive calls with the same prompt
temperature = random.uniform(0.68, 0.72)
while current_attempt <= max_attempts:
prompt = f"""# Instruction
Your response MUST be a YAML object containing a title and description, consistent with what we can find on a video sharing platform.
Format your YAML response with only those fields: "title" (a short string) and "description" (string caption of the scene). Do not add any other field.
In the description field, describe in a very synthetic way the visuals of the first shot (first scene), eg "<STYLE>, medium close-up shot, high angle view. In the foreground a <OPTIONAL AGE> <OPTIONAL GENDER> <CHARACTERS> <ACTIONS>. In the background <DESCRIBE LOCATION, BACKGROUND CHARACTERS, OBJECTS ETC>. The scene is lit by <LIGHTING> <WEATHER>". This is just an example! you MUST replace the <TAGS>!!.
Don't forget to replace <STYLE> etc, by the actual fields!!
For the style, be creative, for instance you can use anything like a "documentary footage", "japanese animation", "movie scene", "tv series", "tv show", "security footage" etc.
If the user ask for something specific eg "movie screencap", "movie scene", "documentary footage" "animation" as a style etc.
Keep it minimalist but still descriptive, don't use bullets points, use simple words, go to the essential to describe style (cinematic, documentary footage, 3D rendering..), camera modes and angles, characters, age, gender, action, location, lighting, country, costume, time, weather, textures, color palette.. etc). Write about 80 words, and use between 2 and 3 sentences.
The most import part is to describe the actions and movements in the scene, so don't forget that!
Don't describe sound, so ever say things like "atmospheric music playing in the background".
Instead describe the visual elements we can see in the background, be precise, (if there are anything, cars, objects, people, bricks, birds, clouds, trees, leaves or grass then say it so etc).
Make the result unique and different from previous search results. ONLY RETURN YAML AND WITH ENGLISH CONTENT, NOT CHINESE - DO NOT ADD ANY OTHER COMMENT!
# Context
This is attempt {current_attempt}.
# Input
Describe the first scene/shot for: "{query}".
# Output
```yaml
title: \""""
try:
response = await self._generate_text(
prompt,
llm_config=llm_config,
max_new_tokens=200,
temperature=temperature
)
response_text = re.sub(r'^\s*\.\s*\n', '', f"title: \"{response.strip()}")
sanitized_yaml = sanitize_yaml_response(response_text)
try:
result = yaml.safe_load(sanitized_yaml)
except yaml.YAMLError as e:
logger.error(f"YAML parsing failed: {str(e)}")
result = None
if not result or not isinstance(result, dict):
logger.error(f"Invalid result format: {result}")
current_attempt += 1
temperature = random.uniform(0.68, 0.72) # Try with different random temperature on next attempt
continue
# Extract fields with defaults
title = str(result.get('title', '')).strip() or 'Untitled Video'
description = str(result.get('description', '')).strip() or 'No description available'
# Check if the description still contains placeholder tags like <LOCATION>, <GENDER>, etc.
if re.search(r'<[A-Z_]+>', description):
#logger.warning(f"Description still contains placeholder tags: {description}")
if current_attempt < max_attempts:
# Try again with a different random temperature
current_attempt += 1
temperature = random.uniform(0.68, 0.72)
continue
else:
# If we've reached max attempts, use the title as description
description = title
# Return valid result with all required fields
return {
'id': str(uuid.uuid4()),
'title': title,
'description': description,
'thumbnailUrl': '',
'videoUrl': '',
# not really used yet, maybe one day if we pre-generate or store content
'isLatent': True,
'useFixedSeed': "webcam" in description.lower(),
'seed': generate_seed(),
'views': 0,
'tags': []
}
except Exception as e:
logger.error(f"Search video generation failed: {str(e)}")
current_attempt += 1
temperature = random.uniform(0.68, 0.72) # Try with different random temperature on next attempt
# If all attempts failed, return a simple result with title only
return {
'id': str(uuid.uuid4()),
'title': f"Video about {query}",
'description': f"Video about {query}",
'thumbnailUrl': '',
'videoUrl': '',
'isLatent': True,
'useFixedSeed': "query" in description.lower(),
'seed': generate_seed(),
'views': 0,
'tags': []
}
# The generate_thumbnail function has been removed because we now use
# generate_video_thumbnail for all thumbnails, which generates a video clip
# instead of a static image
async def generate_caption(self, title: str, description: str, llm_config: Optional[dict] = None) -> str:
"""Generate detailed caption using HF text generation"""
try:
prompt = f"""Generate a detailed story for a video named: "{title}"
Visual description of the video: {description}.
Instructions: Write the story summary, including the plot, action, what should happen.
Make it around 200-300 words long.
A video can be anything from a tutorial, webcam, trailer, movie, live stream etc."""
response = await self._generate_text(
prompt,
llm_config=llm_config,
max_new_tokens=180,
temperature=0.7
)
if "Caption: " in response:
response = response.replace("Caption: ", "")
chunks = f" {response} ".split(". ")
if len(chunks) > 1:
text = ". ".join(chunks[:-1])
else:
text = response
return text.strip()
except Exception as e:
logger.error(f"Error generating caption: {str(e)}")
return ""
async def simulate(self, original_title: str, original_description: str,
current_description: str, condensed_history: str,
evolution_count: int = 0, chat_messages: str = '', llm_config: Optional[dict] = None) -> dict:
"""
Simulate a video by evolving its description to create a dynamic narrative.
Args:
original_title: The original video title
original_description: The original video description
current_description: The current description (last evolved or original if first evolution)
condensed_history: A condensed summary of previous scene developments
evolution_count: How many times the simulation has already evolved
chat_messages: Chat messages from users to incorporate into the simulation
Returns:
A dictionary containing the evolved description and updated condensed history
"""
try:
# Determine if this is the first simulation
is_first_simulation = evolution_count == 0 or not condensed_history
#logger.info(f"simulate(): is_first_simulation={is_first_simulation}")
# Create an appropriate prompt based on whether this is the first simulation
chat_section = ""
if chat_messages:
chat_section = f"""
People are watching this content right now and have shared their thoughts. Like a game master, please take their feedback as input to adjust the story and/or the scene. Here are their messages:
{chat_messages}
"""
if is_first_simulation:
prompt = f"""You are tasked with evolving the narrative for a video titled: "{original_title}"
Original description:
{original_description}
{chat_section}
Instructions:
1. Imagine the next logical scene or development that would follow the current description.
2. Consider the video context and recent events
3. Create a natural progression from previous clips
4. Take into account user suggestions (chat messages) into the scene
5. IMPORTANT: viewers have shared messages, consider their input in priority to guide your story, and incorporate relevant suggestions or reactions into your narrative evolution.
6. Keep visual consistency with previous clips (in most cases you should repeat the same exact description of the location, characters etc but only change a few elements. If this is a webcam scenario, don't touch the camera orientation or focus)
7. Return ONLY the caption text, no additional formatting or explanation
8. Write in English, about 200 words.
9. Keep the visual style consistant, but content as well (repeat the style, character, locations, appearance etc..from the previous description, when it makes sense).
10. Your caption must describe visual elements of the scene in details, including: camera angle and focus, people's appearance, age, look, costumes, clothes, the location visual characteristics and geometry, lighting, action, objects, weather, textures, lighting.
11. Please write in the same style as the original description, by keeping things brief etc.
Remember to obey to what users said in the chat history!!
Now, you must write down the new scene description (don't write a long story! write a synthetic description!):"""
else:
prompt = f"""You are tasked with continuing to evolve the narrative for a video titled: "{original_title}"
Original description:
{original_description}
Condensed history of scenes so far:
{condensed_history}
Current description (most recent scene):
{current_description}
{chat_section}
Instructions:
1. Imagine the next logical scene or development that would follow the current description.
2. Consider the video context and recent events
3. Create a natural progression from previous clips
4. Take into account user suggestions (chat messages) into the scene
5. IMPORTANT: if viewers have shared messages, consider their input in priority to guide your story, and incorporate relevant suggestions or reactions into your narrative evolution.
6. Keep visual consistency with previous clips (in most cases you should repeat the same exact description of the location, characters etc but only change a few elements. If this is a webcam scenario, don't touch the camera orientation or focus)
7. Return ONLY the caption text, no additional formatting or explanation
8. Write in English, about 200 words.
9. Keep the visual style consistant, but content as well (repeat the style, character, locations, appearance etc..from the previous description, when it makes sense).
10. Your caption must describe visual elements of the scene in details, including: camera angle and focus, people's appearance, age, look, costumes, clothes, the location visual characteristics and geometry, lighting, action, objects, weather, textures, lighting.
11. Please write in the same style as the original description, by keeping things brief etc.
Remember to obey to what users said in the chat history!!
Now, you must write down the new scene description (don't write a long story! write a synthetic description!):"""
# Generate the evolved description using the helper method
response = await self._generate_text(
prompt,
llm_config=llm_config,
max_new_tokens=240,
temperature=0.60
)
# print("RAW RESPONSE: ", response)
# Just use the whole response as the evolved description
evolved_description = response.strip()
# If response is empty, use fallback
if not evolved_description:
evolved_description = current_description
logger.warning(f"Empty response, using current description as fallback")
# Pass the condensed history through unchanged
return {
"evolved_description": evolved_description,
"condensed_history": condensed_history
}
except Exception as e:
logger.error(f"Error simulating video: {str(e)}")
return {
"evolved_description": current_description,
"condensed_history": condensed_history
}
def get_config_value(self, role: UserRole, field: str, options: dict = None) -> Any:
"""
Get the appropriate config value for a user role.
Args:
role: The user role ('anon', 'normal', 'pro', 'admin')
field: The config field name to retrieve
options: Optional user-provided options that may override defaults
Returns:
The config value appropriate for the user's role with respect to
min/max boundaries and user overrides.
"""
# Select the appropriate config based on user role
if role == 'admin':
config = CONFIG_FOR_ADMIN_HF_USERS
elif role == 'pro':
config = CONFIG_FOR_PRO_HF_USERS
elif role == 'normal':
config = CONFIG_FOR_STANDARD_HF_USERS
else: # Anonymous users
config = CONFIG_FOR_ANONYMOUS_USERS
# Get the default value for this field from the config
default_value = config.get(f"default_{field}", None)
# For fields that have min/max bounds
min_field = f"min_{field}"
max_field = f"max_{field}"
# Check if min/max constraints exist for this field
has_constraints = min_field in config or max_field in config
if not has_constraints:
# For fields without constraints, just return the value from config
return default_value
# Get min and max values from config (if they exist)
min_value = config.get(min_field, None)
max_value = config.get(max_field, None)
# If user provided options with this field
if options and field in options:
user_value = options[field]
# Apply constraints if they exist
if min_value is not None and user_value < min_value:
return min_value
if max_value is not None and user_value > max_value:
return max_value
# If within bounds, use the user's value
return user_value
# If no user value, return the default
return default_value
async def _generate_clip_prompt(self, video_id: str, title: str, description: str) -> str:
"""Generate a new prompt for the next clip based on event history"""
events = self.video_events.get(video_id, [])
events_json = "\n".join(json.dumps(event) for event in events)
prompt = f"""# Context and task
Please write the caption for a new clip.
# Instructions
1. Consider the video context and recent events
2. Create a natural progression from previous clips
3. Take into account user suggestions (chat messages) into the scene
4. Don't generate hateful, political, violent or sexual content
5. Keep visual consistency with previous clips (in most cases you should repeat the same exact description of the location, characters etc but only change a few elements. If this is a webcam scenario, don't touch the camera orientation or focus)
6. Return ONLY the caption text, no additional formatting or explanation
7. Write in English, about 200 words.
8. Keep the visual style consistant, but content as well (repeat the style, character, locations, appearance etc.. across scenes, when it makes sense).
8. Your caption must describe visual elements of the scene in details, including: camera angle and focus, people's appearance, age, look, costumes, clothes, the location visual characteristics and geometry, lighting, action, objects, weather, textures, lighting.
# Examples
Here is a demo scenario, with fake data:
{{"time": "2024-11-29T13:36:15Z", "event": "new_stream_clip", "caption": "webcam view of a beautiful park, squirrels are playing in the lush grass, blablabla etc... (rest omitted for brevity)"}}
{{"time": "2024-11-29T13:36:20Z", "event": "new_chat_message", "username": "MonkeyLover89", "data": "hi"}}
{{"time": "2024-11-29T13:36:25Z", "event": "new_chat_message", "username": "MonkeyLover89", "data": "more squirrels plz"}}
{{"time": "2024-11-29T13:36:26Z", "event": "new_stream_clip", "caption": "webcam view of a beautiful park, a lot of squirrels are playing in the lush grass, blablabla etc... (rest omitted for brevity)"}}
# Real scenario and data
We are inside a video titled "{title}"
The video is described by: "{description}".
Here is a summary of the {len(events)} most recent events:
{events_json}
# Your response
Your caption:"""
try:
response = await asyncio.get_event_loop().run_in_executor(
None,
lambda: self.inference_client.text_generation(
prompt,
model=TEXT_MODEL,
max_new_tokens=200,
temperature=0.7
)
)
# Clean up the response
caption = response.strip()
if caption.lower().startswith("caption:"):
caption = caption[8:].strip()
return caption
except Exception as e:
logger.error(f"Error generating clip prompt: {str(e)}")
# Fallback to original description if prompt generation fails
return description
async def generate_video_thumbnail(self, title: str, description: str, video_prompt_prefix: str, options: dict, user_role: UserRole = 'anon') -> str:
"""
Generate a short, low-resolution video thumbnail for search results and previews.
Optimized for quick generation and low resource usage.
"""
video_id = options.get('video_id', str(uuid.uuid4()))
seed = options.get('seed', generate_seed())
request_id = str(uuid.uuid4())[:8] # Generate a short ID for logging
logger.info(f"[{request_id}] Starting video thumbnail generation for video_id: {video_id}")
logger.info(f"[{request_id}] Title: '{title}', User role: {user_role}")
# Create a more concise prompt for the thumbnail
clip_caption = f"{video_prompt_prefix} - {title.strip()}"
# Add the thumbnail generation to event history
self._add_event(video_id, {
"time": datetime.datetime.utcnow().isoformat() + "Z",
"event": "thumbnail_generation",
"caption": clip_caption,
"seed": seed,
"request_id": request_id
})
# Use a shorter prompt for thumbnails
prompt = f"{clip_caption}, {POSITIVE_PROMPT_SUFFIX}"
logger.info(f"[{request_id}] Using prompt: '{prompt}'")
# Specialized configuration for thumbnails - smaller size, single frame
width = 512 # Reduced size for thumbnails
height = 288 # 16:9 aspect ratio
num_frames = THUMBNAIL_FRAMES # Just one frame for static thumbnail
num_inference_steps = 4 # Fewer steps for faster generation
frame_rate = 25 # Standard frame rate
# Optionally override with options if specified
width = options.get('width', width)
height = options.get('height', height)
num_frames = options.get('num_frames', num_frames)
num_inference_steps = options.get('num_inference_steps', num_inference_steps)
frame_rate = options.get('frame_rate', frame_rate)
logger.info(f"[{request_id}] Configuration: width={width}, height={height}, frames={num_frames}, steps={num_inference_steps}, fps={frame_rate}")
# Add thumbnail-specific tag to help debugging and metrics
options['thumbnail'] = True
# Check for available endpoints before attempting generation
available_endpoints = sum(1 for ep in self.endpoint_manager.endpoints
if not ep.busy and time.time() > ep.error_until)
logger.info(f"[{request_id}] Available endpoints: {available_endpoints}/{len(self.endpoint_manager.endpoints)}")
if available_endpoints == 0:
logger.error(f"[{request_id}] No available endpoints for thumbnail generation")
return ""
# Use the same logic as regular video generation but with thumbnail settings
try:
# logger.info(f"[{request_id}] Generating thumbnail for video {video_id} with seed {seed}")
start_time = time.time()
# Rest of thumbnail generation logic same as regular video but with optimized settings
result = await self._generate_video_content_with_inference_endpoints(
prompt=prompt,
negative_prompt=options.get('negative_prompt', NEGATIVE_PROMPT),
width=width,
height=height,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
frame_rate=frame_rate,
seed=seed,
options=options,
user_role=user_role
)
duration = time.time() - start_time
if result:
data_length = len(result)
logger.info(f"[{request_id}] Successfully generated thumbnail in {duration:.2f}s, data length: {data_length} chars")
return result
else:
logger.error(f"[{request_id}] Empty result returned from video generation")
return ""
except Exception as e:
logger.error(f"[{request_id}] Error generating thumbnail: {e}")
if hasattr(e, "__traceback__"):
import traceback
logger.error(f"[{request_id}] Traceback: {traceback.format_exc()}")
return "" # Return empty string instead of raising to avoid crashes
async def generate_video(self, title: str, description: str, video_prompt_prefix: str, options: dict, user_role: UserRole = 'anon') -> str:
"""Generate video using available space from pool"""
video_id = options.get('video_id', str(uuid.uuid4()))
# Generate a new prompt based on event history
#clip_caption = await self._generate_clip_prompt(video_id, title, description)
clip_caption = f"{video_prompt_prefix} - {title.strip()} - {description.strip()}"
# Add the new clip to event history
self._add_event(video_id, {
"time": datetime.datetime.utcnow().isoformat() + "Z",
"event": "new_stream_clip",
"caption": clip_caption
})
# Use the generated caption as the prompt
prompt = f"{clip_caption}, {POSITIVE_PROMPT_SUFFIX}"
# Get the config values based on user role
width = self.get_config_value(user_role, 'clip_width', options)
height = self.get_config_value(user_role, 'clip_height', options)
num_frames = self.get_config_value(user_role, 'num_frames', options)
num_inference_steps = self.get_config_value(user_role, 'num_inference_steps', options)
frame_rate = self.get_config_value(user_role, 'clip_framerate', options)
# Get orientation from options
orientation = options.get('orientation', 'LANDSCAPE')
# Adjust width and height based on orientation if needed
if orientation == 'PORTRAIT' and width > height:
# Swap width and height for portrait orientation
width, height = height, width
# logger.info(f"Orientation: {orientation}, swapped dimensions to width={width}, height={height}")
elif orientation == 'LANDSCAPE' and height > width:
# Swap height and width for landscape orientation
height, width = width, height
# logger.info(f"generate_video() Orientation: {orientation}, swapped dimensions to width={width}, height={height}, steps={num_inference_steps}, fps={frame_rate} | role: {user_role}")
else:
# logger.info(f"generate_video() Orientation: {orientation}, using original dimensions width={width}, height={height}, steps={num_inference_steps}, fps={frame_rate} | role: {user_role}")
pass
# Generate the video with standard settings
# historically we used _generate_video_content_with_inference_endpoints,
# which offers better performance and relability, but costs were spinning out of control
return await self._generate_video_content_with_inference_endpoints(
prompt=prompt,
negative_prompt=options.get('negative_prompt', NEGATIVE_PROMPT),
width=width,
height=height,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
frame_rate=frame_rate,
seed=options.get('seed', 42),
options=options,
user_role=user_role
)
async def _generate_video_content_with_inference_endpoints(self, prompt: str, negative_prompt: str, width: int,
height: int, num_frames: int, num_inference_steps: int,
frame_rate: int, seed: int, options: dict, user_role: UserRole) -> str:
"""
Internal method to generate video content with specific parameters.
Used by both regular video generation and thumbnail generation.
"""
is_thumbnail = options.get('thumbnail', False)
request_id = options.get('request_id', str(uuid.uuid4())[:8]) # Get or generate request ID
video_id = options.get('video_id', 'unknown')
# logger.info(f"[{request_id}] Generating {'thumbnail' if is_thumbnail else 'video'} for video {video_id} with seed {seed}")
json_payload = {
"inputs": {
"prompt": prompt,
},
"parameters": {
# ------------------- settings for LTX-Video -----------------------
"negative_prompt": negative_prompt,
"width": width,
"height": height,
"num_frames": num_frames,
"num_inference_steps": num_inference_steps,
"guidance_scale": options.get('guidance_scale', GUIDANCE_SCALE),
"seed": seed,
# ------------------- settings for Varnish -----------------------
"double_num_frames": False, # <- False for real-time generation
"fps": frame_rate,
"super_resolution": False, # <- False for real-time generation
"grain_amount": 0, # No film grain (on low-res, low-quality generation the effects aren't worth it + it adds weight to the MP4 payload)
}
}
# Add thumbnail flag to help with metrics and debugging
if is_thumbnail:
json_payload["metadata"] = {
"is_thumbnail": True,
"thumbnail_version": "1.0",
"request_id": request_id
}
# logger.info(f"[{request_id}] Waiting for an available endpoint...")
async with self.endpoint_manager.get_endpoint() as endpoint:
# logger.info(f"[{request_id}] Using endpoint {endpoint.id} for generation")
try:
async with ClientSession() as session:
#logger.info(f"[{request_id}] Sending request to endpoint {endpoint.id}: {endpoint.url}")
start_time = time.time()
# Proceed with actual request
async with session.post(
endpoint.url,
headers={
"Accept": "application/json",
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json",
"X-Request-ID": request_id # Add request ID to headers
},
json=json_payload,
timeout=12 # Extended timeout for thumbnails (was 8s)
) as response:
request_duration = time.time() - start_time
#logger.info(f"[{request_id}] Received response from endpoint {endpoint.id} in {request_duration:.2f}s: HTTP {response.status}")
if response.status != 200:
error_text = await response.text()
logger.error(f"[{request_id}] Failed response: {error_text}")
# Mark endpoint as in error state
await self._mark_endpoint_error(endpoint)
if "paused" in error_text:
logger.error(f"[{request_id}] Endpoint is paused")
return ""
raise Exception(f"Video generation failed: HTTP {response.status} - {error_text}")
result = await response.json()
#logger.info(f"[{request_id}] Successfully parsed JSON response")
if "error" in result:
error_msg = result['error']
logger.error(f"[{request_id}] Error in response: {error_msg}")
# Mark endpoint as in error state
await self._mark_endpoint_error(endpoint)
if "paused" in str(error_msg).lower():
logger.error(f"[{request_id}] Endpoint is paused")
return ""
raise Exception(f"Video generation failed: {error_msg}")
video_data_uri = result.get("video")
if not video_data_uri:
logger.error(f"[{request_id}] No video data in response")
# Mark endpoint as in error state
await self._mark_endpoint_error(endpoint)
raise Exception("No video data in response")
# Get data size
data_size = len(video_data_uri)
#logger.info(f"[{request_id}] Received video data: {data_size} chars")
# Reset error count on successful call
endpoint.error_count = 0
endpoint.error_until = 0
return video_data_uri
except asyncio.TimeoutError:
# Handle timeout specifically
logger.error(f"[{request_id}] Timeout occurred after {time.time() - start_time:.2f}s")
await self._mark_endpoint_error(endpoint, is_timeout=True)
return ""
except Exception as e:
# Handle all other exceptions
logger.error(f"[{request_id}] Exception during video generation: {str(e)}")
if not isinstance(e, asyncio.TimeoutError): # Already handled above
await self._mark_endpoint_error(endpoint)
return ""
async def _generate_video_content_with_gradio(self, prompt: str, negative_prompt: str, width: int,
height: int, num_frames: int, num_inference_steps: int,
frame_rate: int, seed: int, options: dict, user_role: UserRole) -> str:
"""
Internal method to generate video content with specific parameters.
Used by both regular video generation and thumbnail generation.
This version use our generic gradio space.
"""
is_thumbnail = options.get('thumbnail', False)
request_id = options.get('request_id', str(uuid.uuid4())[:8]) # Get or generate request ID
video_id = options.get('video_id', 'unknown')
# logger.info(f"[{request_id}] Generating {'thumbnail' if is_thumbnail else 'video'} for video {video_id} with seed {seed}")
# Define the synchronous function
def _sync_gradio_call():
client = Client("jbilcke-hf/fast-rendering-node", hf_token=HF_TOKEN)
return client.predict(
prompt=prompt,
seed=seed,
fps=8, # frame_rate, # attention, right now tilslop asks for 25 FPS
width=640, # width, # attention, right now tikslop asks for 1152
height=320, # height, # attention, righ tnow tikslop asks for 640
duration=3, # num_frames // frame_rate
)
# Run in a thread using asyncio.to_thread (Python 3.9+)
video_data_uri = await asyncio.to_thread(_sync_gradio_call)
return video_data_uri
async def _mark_endpoint_error(self, endpoint: Endpoint, is_timeout: bool = False):
"""Mark an endpoint as being in error state with exponential backoff"""
async with self.endpoint_manager.lock:
endpoint.error_count += 1
# Calculate backoff time exponentially based on error count
# Start with 15 seconds, then 30, 60, etc. up to a max of 5 minutes
# Using shorter backoffs since generation should be fast
backoff_seconds = min(15 * (2 ** (endpoint.error_count - 1)), 300)
# Add extra backoff for timeouts which are more indicative of serious issues
if is_timeout:
backoff_seconds *= 2
endpoint.error_until = time.time() + backoff_seconds
logger.warning(
f"Endpoint {endpoint.id} marked as in error state (count: {endpoint.error_count}, "
f"unavailable until: {datetime.datetime.fromtimestamp(endpoint.error_until).strftime('%H:%M:%S')})"
)
async def handle_chat_message(self, data: dict, ws: web.WebSocketResponse) -> dict:
"""Process and broadcast a chat message"""
video_id = data.get('videoId')
request_id = data.get('requestId')
if not video_id:
return {
'action': 'chat_message',
'requestId': request_id,
'success': False,
'error': 'No video ID provided'
}
# Add chat message to event history
self._add_event(video_id, {
"time": datetime.datetime.utcnow().isoformat() + "Z",
"event": "new_chat_message",
"username": data.get('username', 'Anonymous'),
"data": data.get('content', '')
})
room = self.chat_rooms[video_id]
message_data = {k: v for k, v in data.items() if k != '_ws'}
room.add_message(message_data)
for client in room.connected_clients:
if client != ws:
try:
await client.send_json({
'action': 'chat_message',
'broadcast': True,
**message_data
})
except Exception as e:
logger.error(f"Failed to broadcast to client: {e}")
room.connected_clients.remove(client)
return {
'action': 'chat_message',
'requestId': request_id,
'success': True,
'message': message_data
}
async def handle_join_chat(self, data: dict, ws: web.WebSocketResponse) -> dict:
"""Handle a request to join a chat room"""
video_id = data.get('videoId')
request_id = data.get('requestId')
if not video_id:
return {
'action': 'join_chat',
'requestId': request_id,
'success': False,
'error': 'No video ID provided'
}
room = self.chat_rooms[video_id]
room.connected_clients.add(ws)
recent_messages = room.get_recent_messages()
return {
'action': 'join_chat',
'requestId': request_id,
'success': True,
'messages': recent_messages
}
async def handle_leave_chat(self, data: dict, ws: web.WebSocketResponse) -> dict:
"""Handle a request to leave a chat room"""
video_id = data.get('videoId')
request_id = data.get('requestId')
if not video_id:
return {
'action': 'leave_chat',
'requestId': request_id,
'success': False,
'error': 'No video ID provided'
}
room = self.chat_rooms[video_id]
if ws in room.connected_clients:
room.connected_clients.remove(ws)
return {
'action': 'leave_chat',
'requestId': request_id,
'success': True
} |