jbilcke-hf HF staff commited on
Commit
023c8c3
·
verified ·
1 Parent(s): 844c949

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -147
app.py CHANGED
@@ -1,154 +1,104 @@
1
- import gradio as gr
 
 
2
  import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
- import torch
8
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
+ import os
2
+ import tempfile
3
+ import torch
4
  import numpy as np
5
+ import gradio as gr
6
+ from PIL import Image
7
+ import cv2
8
  from diffusers import DiffusionPipeline
9
+ from script import SatelliteModelGenerator
10
 
11
+ # Initialize models and device
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
+ dtype = torch.bfloat16
14
+
15
+ # Initialize FLUX model for satellite imagery
16
+ flux_pipe = DiffusionPipeline.from_pretrained(
17
+ "jbilcke-hf/flux-satellite",
18
+ torch_dtype=dtype
19
+ ).to(device)
20
+
21
+ def generate_and_process_map(prompt: str) -> str | None:
22
+ """Generate satellite image from prompt and convert to 3D model."""
23
+ try:
24
+ # Set dimensions
25
+ width = height = 1024
26
+
27
+ # Generate random seed
28
+ seed = np.random.randint(0, np.iinfo(np.int32).max)
29
+
30
+ # Set random seeds
31
+ torch.manual_seed(seed)
32
+ np.random.seed(seed)
33
+
34
+ # Generate satellite image using FLUX
35
+ generator = torch.Generator(device=device).manual_seed(seed)
36
+ generated_image = flux_pipe(
37
+ prompt=prompt,
38
+ width=width,
39
+ height=height,
40
+ num_inference_steps=30,
41
+ generator=generator,
42
+ guidance_scale=7.5
43
+ ).images[0]
44
+
45
+ # Convert PIL Image to OpenCV format
46
+ cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
47
+
48
+ # Initialize SatelliteModelGenerator
49
+ generator = SatelliteModelGenerator(building_height=0.09)
50
+
51
+ # Process image
52
+ print("Segmenting image...")
53
+ segmented_img = generator.segment_image(cv_image, window_size=5)
54
+
55
+ print("Estimating heights...")
56
+ height_map = generator.estimate_heights(cv_image, segmented_img)
57
+
58
+ # Generate mesh
59
+ print("Generating mesh...")
60
+ mesh = generator.generate_mesh(height_map, cv_image, add_walls=True)
61
+
62
+ # Export to GLB
63
+ temp_dir = tempfile.mkdtemp()
64
+ output_path = os.path.join(temp_dir, 'output.glb')
65
+ mesh.export(output_path)
66
+
67
+ return output_path
68
+
69
+ except Exception as e:
70
+ print(f"Error during generation: {str(e)}")
71
+ import traceback
72
+ traceback.print_exc()
73
+ return None
74
+
75
+ # Create Gradio interface
76
+ with gr.Blocks() as demo:
77
+ gr.Markdown("# Text to Map")
78
+ gr.Markdown("Generate 3D maps from text descriptions using FLUX and mesh generation.")
79
+
80
+ with gr.Row():
81
+ prompt_input = gr.Text(
82
+ label="Enter your prompt",
83
+ placeholder="eg. satellite view of downtown Manhattan"
84
+ )
85
+
86
+ with gr.Row():
87
+ generate_btn = gr.Button("Generate", variant="primary")
88
+
89
+ with gr.Row():
90
+ model_output = gr.Model3D(
91
+ label="Generated 3D Map",
92
+ clear_color=[0.0, 0.0, 0.0, 0.0],
93
+ )
94
+
95
+ # Event handler
96
+ generate_btn.click(
97
+ fn=generate_and_process_map,
98
+ inputs=[prompt_input],
99
+ outputs=[model_output],
100
+ api_name="generate"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  )
102
 
103
  if __name__ == "__main__":
104
+ demo.queue().launch()