Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,104 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
from diffusers import DiffusionPipeline
|
7 |
-
import
|
8 |
|
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
torch_dtype
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
)
|
99 |
-
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
-
with gr.Row():
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
-
|
111 |
-
height = gr.Slider(
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
-
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import torch
|
4 |
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
import cv2
|
8 |
from diffusers import DiffusionPipeline
|
9 |
+
from script import SatelliteModelGenerator
|
10 |
|
11 |
+
# Initialize models and device
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
dtype = torch.bfloat16
|
14 |
+
|
15 |
+
# Initialize FLUX model for satellite imagery
|
16 |
+
flux_pipe = DiffusionPipeline.from_pretrained(
|
17 |
+
"jbilcke-hf/flux-satellite",
|
18 |
+
torch_dtype=dtype
|
19 |
+
).to(device)
|
20 |
+
|
21 |
+
def generate_and_process_map(prompt: str) -> str | None:
|
22 |
+
"""Generate satellite image from prompt and convert to 3D model."""
|
23 |
+
try:
|
24 |
+
# Set dimensions
|
25 |
+
width = height = 1024
|
26 |
+
|
27 |
+
# Generate random seed
|
28 |
+
seed = np.random.randint(0, np.iinfo(np.int32).max)
|
29 |
+
|
30 |
+
# Set random seeds
|
31 |
+
torch.manual_seed(seed)
|
32 |
+
np.random.seed(seed)
|
33 |
+
|
34 |
+
# Generate satellite image using FLUX
|
35 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
36 |
+
generated_image = flux_pipe(
|
37 |
+
prompt=prompt,
|
38 |
+
width=width,
|
39 |
+
height=height,
|
40 |
+
num_inference_steps=30,
|
41 |
+
generator=generator,
|
42 |
+
guidance_scale=7.5
|
43 |
+
).images[0]
|
44 |
+
|
45 |
+
# Convert PIL Image to OpenCV format
|
46 |
+
cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
|
47 |
+
|
48 |
+
# Initialize SatelliteModelGenerator
|
49 |
+
generator = SatelliteModelGenerator(building_height=0.09)
|
50 |
+
|
51 |
+
# Process image
|
52 |
+
print("Segmenting image...")
|
53 |
+
segmented_img = generator.segment_image(cv_image, window_size=5)
|
54 |
+
|
55 |
+
print("Estimating heights...")
|
56 |
+
height_map = generator.estimate_heights(cv_image, segmented_img)
|
57 |
+
|
58 |
+
# Generate mesh
|
59 |
+
print("Generating mesh...")
|
60 |
+
mesh = generator.generate_mesh(height_map, cv_image, add_walls=True)
|
61 |
+
|
62 |
+
# Export to GLB
|
63 |
+
temp_dir = tempfile.mkdtemp()
|
64 |
+
output_path = os.path.join(temp_dir, 'output.glb')
|
65 |
+
mesh.export(output_path)
|
66 |
+
|
67 |
+
return output_path
|
68 |
+
|
69 |
+
except Exception as e:
|
70 |
+
print(f"Error during generation: {str(e)}")
|
71 |
+
import traceback
|
72 |
+
traceback.print_exc()
|
73 |
+
return None
|
74 |
+
|
75 |
+
# Create Gradio interface
|
76 |
+
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("# Text to Map")
|
78 |
+
gr.Markdown("Generate 3D maps from text descriptions using FLUX and mesh generation.")
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
prompt_input = gr.Text(
|
82 |
+
label="Enter your prompt",
|
83 |
+
placeholder="eg. satellite view of downtown Manhattan"
|
84 |
+
)
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
model_output = gr.Model3D(
|
91 |
+
label="Generated 3D Map",
|
92 |
+
clear_color=[0.0, 0.0, 0.0, 0.0],
|
93 |
+
)
|
94 |
+
|
95 |
+
# Event handler
|
96 |
+
generate_btn.click(
|
97 |
+
fn=generate_and_process_map,
|
98 |
+
inputs=[prompt_input],
|
99 |
+
outputs=[model_output],
|
100 |
+
api_name="generate"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
)
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
+
demo.queue().launch()
|