Spaces:
Paused
Paused
import gradio as gr | |
from urllib.parse import urlparse | |
import requests | |
import time | |
import base64 | |
import os | |
from io import BytesIO | |
from PIL import Image | |
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') | |
from utils.gradio_helpers import parse_outputs, process_outputs | |
def decode_data_uri_to_image(data_uri): | |
# parse the data uri | |
header, encoded = data_uri.split(",", 1) | |
data = base64.b64decode(encoded) | |
img = Image.open(BytesIO(data)) | |
return img | |
inputs = [] | |
inputs.append(gr.Textbox( | |
label="Secret Token", info="Secret Token" | |
)) | |
inputs.append(gr.Textbox( | |
label="Prompt", info='''Prompt''' | |
)) | |
inputs.append(gr.Number( | |
label="Seed", info='''Leave blank to randomize the seed''', value=None | |
)) | |
names = ['secret_token', 'prompt', 'seed'] | |
outputs = [] | |
outputs.append(gr.Image()) | |
expected_outputs = len(outputs) | |
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)): | |
headers = {'Content-Type': 'application/json'} | |
payload = {"input": {}} | |
base_url = "http://0.0.0.0:7860" | |
for i, key in enumerate(names): | |
value = args[i] | |
if name is "secret_token": | |
if value is not SECRET_TOKEN: | |
raise gr.Error("Invalid secret token! Please fork this space if you want to use it, and define your own secret token.") | |
continue | |
if value and (os.path.exists(str(value))): | |
value = f"{base_url}/file=" + value | |
if value is not None and value != "": | |
payload["input"][key] = value | |
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload) | |
if response.status_code == 201: | |
follow_up_url = response.json()["urls"]["get"] | |
response = requests.get(follow_up_url, headers=headers) | |
while response.json()["status"] != "succeeded": | |
if response.json()["status"] == "failed": | |
raise gr.Error("The submission failed!") | |
response = requests.get(follow_up_url, headers=headers) | |
time.sleep(1) | |
if response.status_code == 200: | |
json_response = response.json() | |
#If the output component is JSON return the entire output response | |
if(outputs[0].get_config()["name"] == "json"): | |
return json_response["output"] | |
predict_outputs = parse_outputs(json_response["output"]) | |
processed_outputs = process_outputs(predict_outputs) | |
difference_outputs = expected_outputs - len(processed_outputs) | |
# If less outputs than expected, hide the extra ones | |
if difference_outputs > 0: | |
extra_outputs = [gr.update(visible=False)] * difference_outputs | |
processed_outputs.extend(extra_outputs) | |
# If more outputs than expected, cap the outputs to the expected number | |
elif difference_outputs < 0: | |
processed_outputs = processed_outputs[:difference_outputs] | |
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0] | |
else: | |
if(response.status_code == 409): | |
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.") | |
raise gr.Error(f"The submission failed! Error: {response.status_code}") | |
title = "Demo for sdxl-panoramic cog image by lucataco" | |
model_description = "360 Panorama SDXL image with inpainted wrapping seam" | |
gr.HTML(""" | |
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;"> | |
<div style="text-align: center; color: black;"> | |
<p style="color: black;">This space is not a normal Gradio space you can use through a UI, but a microservice API designed for automated access.</p> | |
<p style="color: black;">You can clone the original space here: <a href="https://huggingface.co/spaces/jbilcke-hf/panorama-space-you-can-duplicate" target="_blank">jbilcke-hf/panorama-space-you-can-duplicate</a>.</p> | |
</div> | |
</div>""") | |
app = gr.Interface( | |
fn=predict, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
description=model_description, | |
allow_flagging="never", | |
) | |
app.launch(share=True) | |