Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| import os | |
| import random | |
| import gradio as gr | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler | |
| DESCRIPTION = 'This space is an API service meant to be used by frontend applications.' | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>' | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024')) | |
| SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') | |
| device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
| if torch.cuda.is_available(): | |
| unet = UNet2DConditionModel.from_pretrained( | |
| "latent-consistency/lcm-ssd-1b", | |
| torch_dtype=torch.float16, | |
| variant="fp16" | |
| ) | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "segmind/SSD-1B", | |
| unet=unet, | |
| torch_dtype=torch.float16, | |
| variant="fp16" | |
| ) | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.to(device) | |
| else: | |
| pipe = None | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def generate(prompt: str, | |
| negative_prompt: str = '', | |
| use_negative_prompt: bool = False, | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 1.0, | |
| num_inference_steps: int = 6, | |
| secret_token: str = '') -> PIL.Image.Image: | |
| if secret_token != SECRET_TOKEN: | |
| raise gr.Error( | |
| f'Invalid secret token. Please fork the original space if you want to use it for yourself.') | |
| generator = torch.Generator().manual_seed(seed) | |
| if not use_negative_prompt: | |
| negative_prompt = None # type: ignore | |
| return pipe(prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| output_type='pil').images[0] | |
| with gr.Blocks() as demo: | |
| gr.Markdown(DESCRIPTION) | |
| secret_token = gr.Text( | |
| label='Secret Token', | |
| max_lines=1, | |
| placeholder='Enter your secret token', | |
| ) | |
| prompt = gr.Text( | |
| label='Prompt', | |
| show_label=False, | |
| max_lines=1, | |
| placeholder='Enter your prompt', | |
| container=False, | |
| ) | |
| run_button = gr.Button('Run', scale=0) | |
| result = gr.Image(label='Result', show_label=False) | |
| use_negative_prompt = gr.Checkbox(label='Use negative prompt', value=False) | |
| negative_prompt = gr.Text( | |
| label='Negative prompt', | |
| max_lines=1, | |
| placeholder='Enter a negative prompt', | |
| visible=False, | |
| ) | |
| seed = gr.Slider(label='Seed', | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0) | |
| randomize_seed = gr.Checkbox(label='Randomize seed', value=True) | |
| width = gr.Slider( | |
| label='Width', | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label='Height', | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label='Guidance scale', | |
| minimum=1, | |
| maximum=20, | |
| step=0.1, | |
| value=1.0) | |
| num_inference_steps = gr.Slider( | |
| label='Number of inference steps', | |
| minimum=2, | |
| maximum=8, | |
| step=1, | |
| value=4) | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt | |
| ) | |
| inputs = [ | |
| prompt, | |
| negative_prompt, | |
| use_negative_prompt, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| secret_token, | |
| ] | |
| prompt.submit( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed | |
| ).then( | |
| fn=generate, | |
| inputs=inputs, | |
| outputs=result, | |
| api_name='run', | |
| ) | |
| negative_prompt.submit( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed | |
| ).then( | |
| fn=generate, | |
| inputs=inputs, | |
| outputs=result | |
| ) | |
| run_button.click( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed | |
| ).then( | |
| fn=generate, | |
| inputs=inputs, | |
| outputs=result | |
| ) | |
| demo.queue(max_size=6).launch() |