import gradio as gr from modelscope.pipelines import pipeline from modelscope.outputs import OutputKeys pipe = pipeline(task='image-to-video', model='damo/Image-to-Video', model_revision='v1.1.0') def infer (image_in): # IMG_PATH: your image path (url or local file) IMG_PATH = image_in output_video_path = pipe(IMG_PATH, output_video='output.mp4')[OutputKeys.OUTPUT_VIDEO] print(output_video_path) return output_video_path with gr.Blocks() as demo: gr.Markdown("""

You are currently viewing a micro-service API meant to be used by robots.
For the human UI, please check out the original Space by Sylvain Filoni.

""") image_in = gr.Image( label = "Source Image", source = "upload", type = "filepath", elem_id = "image-in" ) submit_btn = gr.Button("Submit") video_out = gr.Video(label = "Video Result", elem_id = "video-out") submit_btn.click(fn = infer, inputs = [image_in], outputs = [video_out]) demo.queue(max_size=6).launch()