import math import torch import os from torch import nn from safetensors.torch import load_file import torch.nn.functional as F from diffusers import AutoencoderTiny from transformers import SiglipImageProcessor, SiglipVisionModel import lpips from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler class ResBlock(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1) self.norm1 = nn.GroupNorm(8, out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1) self.norm2 = nn.GroupNorm(8, out_channels) self.skip = nn.Conv2d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity() def forward(self, x): identity = self.skip(x) x = self.conv1(x) x = self.norm1(x) x = F.silu(x) x = self.conv2(x) x = self.norm2(x) x = F.silu(x + identity) return x class DiffusionFeatureExtractor2(nn.Module): def __init__(self, in_channels=32): super().__init__() self.version = 2 # Path 1: Upsample to 512x512 (1, 64, 512, 512) self.up_path = nn.ModuleList([ nn.Conv2d(in_channels, 64, 3, padding=1), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), ResBlock(64, 64), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), ResBlock(64, 64), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), ResBlock(64, 64), nn.Conv2d(64, 64, 3, padding=1), ]) # Path 2: Upsample to 256x256 (1, 128, 256, 256) self.path2 = nn.ModuleList([ nn.Conv2d(in_channels, 128, 3, padding=1), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), ResBlock(128, 128), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), ResBlock(128, 128), nn.Conv2d(128, 128, 3, padding=1), ]) # Path 3: Upsample to 128x128 (1, 256, 128, 128) self.path3 = nn.ModuleList([ nn.Conv2d(in_channels, 256, 3, padding=1), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), ResBlock(256, 256), nn.Conv2d(256, 256, 3, padding=1) ]) # Path 4: Original size (1, 512, 64, 64) self.path4 = nn.ModuleList([ nn.Conv2d(in_channels, 512, 3, padding=1), ResBlock(512, 512), ResBlock(512, 512), nn.Conv2d(512, 512, 3, padding=1) ]) # Path 5: Downsample to 32x32 (1, 512, 32, 32) self.path5 = nn.ModuleList([ nn.Conv2d(in_channels, 512, 3, padding=1), ResBlock(512, 512), nn.AvgPool2d(2), ResBlock(512, 512), nn.Conv2d(512, 512, 3, padding=1) ]) def forward(self, x): outputs = [] # Path 1: 512x512 x1 = x for layer in self.up_path: x1 = layer(x1) outputs.append(x1) # [1, 64, 512, 512] # Path 2: 256x256 x2 = x for layer in self.path2: x2 = layer(x2) outputs.append(x2) # [1, 128, 256, 256] # Path 3: 128x128 x3 = x for layer in self.path3: x3 = layer(x3) outputs.append(x3) # [1, 256, 128, 128] # Path 4: 64x64 x4 = x for layer in self.path4: x4 = layer(x4) outputs.append(x4) # [1, 512, 64, 64] # Path 5: 32x32 x5 = x for layer in self.path5: x5 = layer(x5) outputs.append(x5) # [1, 512, 32, 32] return outputs class DFEBlock(nn.Module): def __init__(self, channels): super().__init__() self.conv1 = nn.Conv2d(channels, channels, 3, padding=1) self.conv2 = nn.Conv2d(channels, channels, 3, padding=1) self.act = nn.GELU() self.proj = nn.Conv2d(channels, channels, 1) def forward(self, x): x_in = x x = self.conv1(x) x = self.conv2(x) x = self.act(x) x = self.proj(x) x = x + x_in return x class DiffusionFeatureExtractor(nn.Module): def __init__(self, in_channels=16): super().__init__() self.version = 1 num_blocks = 6 self.conv_in = nn.Conv2d(in_channels, 512, 1) self.blocks = nn.ModuleList([DFEBlock(512) for _ in range(num_blocks)]) self.conv_out = nn.Conv2d(512, 512, 1) def forward(self, x): x = self.conv_in(x) for block in self.blocks: x = block(x) x = self.conv_out(x) return x class DiffusionFeatureExtractor3(nn.Module): def __init__(self, device=torch.device("cuda"), dtype=torch.bfloat16, vae=None): super().__init__() self.version = 3 if vae is None: vae = AutoencoderTiny.from_pretrained( "madebyollin/taef1", torch_dtype=torch.bfloat16) self.vae = vae # image_encoder_path = "google/siglip-so400m-patch14-384" image_encoder_path = "google/siglip2-so400m-patch16-512" try: self.image_processor = SiglipImageProcessor.from_pretrained( image_encoder_path) except EnvironmentError: self.image_processor = SiglipImageProcessor() self.vision_encoder = SiglipVisionModel.from_pretrained( image_encoder_path, ignore_mismatched_sizes=True ).to(device, dtype=dtype) self.lpips_model = lpips_model = lpips.LPIPS(net='vgg') self.lpips_model = lpips_model.to(device, dtype=torch.float32) self.losses = {} self.log_every = 100 self.step = 0 def get_siglip_features(self, tensors_0_1): dtype = torch.bfloat16 device = self.vae.device # resize to 384x384 if 'height' in self.image_processor.size: size = self.image_processor.size['height'] else: size = self.image_processor.crop_size['height'] images = F.interpolate(tensors_0_1, size=(size, size), mode='bicubic', align_corners=False) mean = torch.tensor(self.image_processor.image_mean).to( device, dtype=dtype ).detach() std = torch.tensor(self.image_processor.image_std).to( device, dtype=dtype ).detach() # tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0 clip_image = ( images - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1]) id_embeds = self.vision_encoder( clip_image, output_hidden_states=True, ) last_hidden_state = id_embeds['last_hidden_state'] return last_hidden_state def get_lpips_features(self, tensors_0_1): device = self.vae.device tensors_n1p1 = (tensors_0_1 * 2) - 1 def get_lpips_features(img): # -1 to 1 in0_input = self.lpips_model.scaling_layer(img) outs0 = self.lpips_model.net.forward(in0_input) feats0 = {} feats_list = [] for kk in range(self.lpips_model.L): feats0[kk] = lpips.normalize_tensor(outs0[kk]) feats_list.append(feats0[kk]) # 512 in # vgg # 0 torch.Size([1, 64, 512, 512]) # 1 torch.Size([1, 128, 256, 256]) # 2 torch.Size([1, 256, 128, 128]) # 3 torch.Size([1, 512, 64, 64]) # 4 torch.Size([1, 512, 32, 32]) return feats_list # do lpips lpips_feat_list = [x for x in get_lpips_features( tensors_n1p1.to(device, dtype=torch.float32))] return lpips_feat_list def forward( self, noise, noise_pred, noisy_latents, timesteps, batch: DataLoaderBatchDTO, scheduler: CustomFlowMatchEulerDiscreteScheduler, # lpips_weight=1.0, lpips_weight=10.0, clip_weight=0.1, pixel_weight=0.1, model=None ): dtype = torch.bfloat16 device = self.vae.device if model is not None and hasattr(model, 'get_stepped_pred'): stepped_latents = model.get_stepped_pred(noise_pred, noise) else: # stepped_latents = noise - noise_pred # first we step the scheduler from current timestep to the very end for a full denoise bs = noise_pred.shape[0] noise_pred_chunks = torch.chunk(noise_pred, bs) timestep_chunks = torch.chunk(timesteps, bs) noisy_latent_chunks = torch.chunk(noisy_latents, bs) stepped_chunks = [] for idx in range(bs): model_output = noise_pred_chunks[idx] timestep = timestep_chunks[idx] scheduler._step_index = None scheduler._init_step_index(timestep) sample = noisy_latent_chunks[idx].to(torch.float32) sigma = scheduler.sigmas[scheduler.step_index] sigma_next = scheduler.sigmas[-1] # use last sigma for final step prev_sample = sample + (sigma_next - sigma) * model_output stepped_chunks.append(prev_sample) stepped_latents = torch.cat(stepped_chunks, dim=0) latents = stepped_latents.to(self.vae.device, dtype=self.vae.dtype) latents = ( latents / self.vae.config['scaling_factor']) + self.vae.config['shift_factor'] tensors_n1p1 = self.vae.decode(latents).sample # -1 to 1 pred_images = (tensors_n1p1 + 1) / 2 # 0 to 1 lpips_feat_list_pred = self.get_lpips_features(pred_images.float()) total_loss = 0 with torch.no_grad(): target_img = batch.tensor.to(device, dtype=dtype) # go from -1 to 1 to 0 to 1 target_img = (target_img + 1) / 2 lpips_feat_list_target = self.get_lpips_features(target_img.float()) if clip_weight > 0: target_clip_output = self.get_siglip_features(target_img).detach() if clip_weight > 0: pred_clip_output = self.get_siglip_features(pred_images) clip_loss = torch.nn.functional.mse_loss( pred_clip_output.float(), target_clip_output.float() ) * clip_weight if 'clip_loss' not in self.losses: self.losses['clip_loss'] = clip_loss.item() else: self.losses['clip_loss'] += clip_loss.item() total_loss += clip_loss skip_lpips_layers = [] lpips_loss = 0 for idx, lpips_feat in enumerate(lpips_feat_list_pred): if idx in skip_lpips_layers: continue lpips_loss += torch.nn.functional.mse_loss( lpips_feat.float(), lpips_feat_list_target[idx].float() ) * lpips_weight if f'lpips_loss_{idx}' not in self.losses: self.losses[f'lpips_loss_{idx}'] = lpips_loss.item() else: self.losses[f'lpips_loss_{idx}'] += lpips_loss.item() total_loss += lpips_loss # mse_loss = torch.nn.functional.mse_loss( # stepped_latents.float(), batch.latents.float() # ) * pixel_weight # if 'pixel_loss' not in self.losses: # self.losses['pixel_loss'] = mse_loss.item() # else: # self.losses['pixel_loss'] += mse_loss.item() if self.step % self.log_every == 0 and self.step > 0: print(f"DFE losses:") for key in self.losses: self.losses[key] /= self.log_every # print in 2.000e-01 format print(f" - {key}: {self.losses[key]:.3e}") self.losses[key] = 0.0 # total_loss += mse_loss self.step += 1 return total_loss class DiffusionFeatureExtractor4(nn.Module): def __init__(self, device=torch.device("cuda"), dtype=torch.bfloat16, vae=None): super().__init__() self.version = 4 if vae is None: raise ValueError("vae must be provided for DFE4") self.vae = vae # image_encoder_path = "google/siglip-so400m-patch14-384" image_encoder_path = "google/siglip2-so400m-patch16-naflex" from transformers import Siglip2ImageProcessor, Siglip2VisionModel try: self.image_processor = Siglip2ImageProcessor.from_pretrained( image_encoder_path) except EnvironmentError: self.image_processor = Siglip2ImageProcessor() self.image_processor.max_num_patches = 1024 self.vision_encoder = Siglip2VisionModel.from_pretrained( image_encoder_path, ignore_mismatched_sizes=True ).to(device, dtype=dtype) self.losses = {} self.log_every = 100 self.step = 0 def _target_hw(self, h, w, patch, max_patches, eps: float = 1e-5): def _snap(x, s): x = math.ceil((x * s) / patch) * patch return max(patch, int(x)) lo, hi = eps / 10, 1.0 while hi - lo >= eps: mid = (lo + hi) / 2 th, tw = _snap(h, mid), _snap(w, mid) if (th // patch) * (tw // patch) <= max_patches: lo = mid else: hi = mid return _snap(h, lo), _snap(w, lo) def tensors_to_siglip_like_features(self, batch: torch.Tensor): """ Args: batch: (bs, 3, H, W) tensor already in the desired value range (e.g. [-1, 1] or [0, 1]); no extra rescale / normalize here. Returns: dict( pixel_values – (bs, L, P) where L = n_h*n_w, P = 3*patch*patch pixel_attention_mask– (L,) all-ones spatial_shapes – (n_h, n_w) ) """ if batch.ndim != 4: raise ValueError("Expected (bs, 3, H, W) tensor") bs, c, H, W = batch.shape proc = self.image_processor patch = proc.patch_size max_patches = proc.max_num_patches # One shared resize for the whole batch tgt_h, tgt_w = self._target_hw(H, W, patch, max_patches) batch = torch.nn.functional.interpolate( batch, size=(tgt_h, tgt_w), mode="bilinear", align_corners=False ) n_h, n_w = tgt_h // patch, tgt_w // patch # flat_dim = c * patch * patch num_p = n_h * n_w # unfold → (bs, flat_dim, num_p) → (bs, num_p, flat_dim) patches = ( torch.nn.functional.unfold(batch, kernel_size=patch, stride=patch) .transpose(1, 2) ) attn_mask = torch.ones(num_p, dtype=torch.long, device=batch.device) spatial = torch.tensor((n_h, n_w), device=batch.device, dtype=torch.int32) # repeat attn_mask for each batch element attn_mask = attn_mask.unsqueeze(0).repeat(bs, 1) spatial = spatial.unsqueeze(0).repeat(bs, 1) return { "pixel_values": patches, # (bs, num_patches, patch_dim) "pixel_attention_mask": attn_mask, # (num_patches,) "spatial_shapes": spatial } def get_siglip_features(self, tensors_0_1): dtype = torch.bfloat16 device = self.vae.device tensors_0_1 = torch.clamp(tensors_0_1, 0.0, 1.0) mean = torch.tensor(self.image_processor.image_mean).to( device, dtype=dtype ).detach() std = torch.tensor(self.image_processor.image_std).to( device, dtype=dtype ).detach() # tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0 clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1]) encoder_kwargs = self.tensors_to_siglip_like_features(clip_image) id_embeds = self.vision_encoder( pixel_values=encoder_kwargs['pixel_values'], pixel_attention_mask=encoder_kwargs['pixel_attention_mask'], spatial_shapes=encoder_kwargs['spatial_shapes'], output_hidden_states=True, ) # embeds = id_embeds['hidden_states'][-2] # penultimate layer image_embeds = id_embeds['pooler_output'] image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) return image_embeds def forward( self, noise, noise_pred, noisy_latents, timesteps, batch: DataLoaderBatchDTO, scheduler: CustomFlowMatchEulerDiscreteScheduler, clip_weight=1.0, mse_weight=0.0, model=None ): dtype = torch.bfloat16 device = self.vae.device tensors = batch.tensor.to(device, dtype=dtype) is_video = False # stack time for video models on the batch dimension if len(noise_pred.shape) == 5: # B, C, T, H, W = images.shape # only take first time noise = noise[:, :, 0, :, :] noise_pred = noise_pred[:, :, 0, :, :] noisy_latents = noisy_latents[:, :, 0, :, :] is_video = True if len(tensors.shape) == 5: # batch is different # (B, T, C, H, W) # only take first time tensors = tensors[:, 0, :, :, :] if model is not None and hasattr(model, 'get_stepped_pred'): stepped_latents = model.get_stepped_pred(noise_pred, noise) else: # stepped_latents = noise - noise_pred # first we step the scheduler from current timestep to the very end for a full denoise bs = noise_pred.shape[0] noise_pred_chunks = torch.chunk(noise_pred, bs) timestep_chunks = torch.chunk(timesteps, bs) noisy_latent_chunks = torch.chunk(noisy_latents, bs) stepped_chunks = [] for idx in range(bs): model_output = noise_pred_chunks[idx] timestep = timestep_chunks[idx] scheduler._step_index = None scheduler._init_step_index(timestep) sample = noisy_latent_chunks[idx].to(torch.float32) sigma = scheduler.sigmas[scheduler.step_index] sigma_next = scheduler.sigmas[-1] # use last sigma for final step prev_sample = sample + (sigma_next - sigma) * model_output stepped_chunks.append(prev_sample) stepped_latents = torch.cat(stepped_chunks, dim=0) latents = stepped_latents.to(self.vae.device, dtype=self.vae.dtype) scaling_factor = self.vae.config['scaling_factor'] if 'scaling_factor' in self.vae.config else 1.0 shift_factor = self.vae.config['shift_factor'] if 'shift_factor' in self.vae.config else 0.0 latents = (latents / scaling_factor) + shift_factor if is_video: # if video, we need to unsqueeze the latents to match the vae input shape latents = latents.unsqueeze(2) tensors_n1p1 = self.vae.decode(latents).sample # -1 to 1 if is_video: # if video, we need to squeeze the tensors to match the output shape tensors_n1p1 = tensors_n1p1.squeeze(2) pred_images = (tensors_n1p1 + 1) / 2 # 0 to 1 total_loss = 0 with torch.no_grad(): target_img = tensors.to(device, dtype=dtype) # go from -1 to 1 to 0 to 1 target_img = (target_img + 1) / 2 if clip_weight > 0: target_clip_output = self.get_siglip_features(target_img).detach() if clip_weight > 0: pred_clip_output = self.get_siglip_features(pred_images) clip_loss = torch.nn.functional.mse_loss( pred_clip_output.float(), target_clip_output.float() ) * clip_weight if 'clip_loss' not in self.losses: self.losses['clip_loss'] = clip_loss.item() else: self.losses['clip_loss'] += clip_loss.item() total_loss += clip_loss if mse_weight > 0: mse_loss = torch.nn.functional.mse_loss( pred_images.float(), target_img.float() ) * mse_weight if 'mse_loss' not in self.losses: self.losses['mse_loss'] = mse_loss.item() else: self.losses['mse_loss'] += mse_loss.item() total_loss += mse_loss if self.step % self.log_every == 0 and self.step > 0: print(f"DFE losses:") for key in self.losses: self.losses[key] /= self.log_every # print in 2.000e-01 format print(f" - {key}: {self.losses[key]:.3e}") self.losses[key] = 0.0 # total_loss += mse_loss self.step += 1 return total_loss def load_dfe(model_path, vae=None) -> DiffusionFeatureExtractor: if model_path == "v3": dfe = DiffusionFeatureExtractor3(vae=vae) dfe.eval() return dfe if model_path == "v4": dfe = DiffusionFeatureExtractor4(vae=vae) dfe.eval() return dfe if not os.path.exists(model_path): raise FileNotFoundError(f"Model file not found: {model_path}") # if it ende with safetensors if model_path.endswith('.safetensors'): state_dict = load_file(model_path) else: state_dict = torch.load(model_path, weights_only=True) if 'model_state_dict' in state_dict: state_dict = state_dict['model_state_dict'] if 'conv_in.weight' in state_dict: dfe = DiffusionFeatureExtractor() else: dfe = DiffusionFeatureExtractor2() dfe.load_state_dict(state_dict) dfe.eval() return dfe