ai-toolkit / scripts /calculate_timestep_weighing_flex.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 430 files
3cc1e25 verified
import gc
import os, sys
from tqdm import tqdm
import numpy as np
import json
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# set visible devices to 0
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# protect from formatting
if True:
import torch
from optimum.quanto import freeze, qfloat8, QTensor, qint4
from diffusers import FluxTransformer2DModel, FluxPipeline, AutoencoderKL, FlowMatchEulerDiscreteScheduler
from toolkit.util.quantize import quantize, get_qtype
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTextModel, CLIPTokenizer
from torchvision import transforms
qtype = "qfloat8"
dtype = torch.bfloat16
# base_model_path = "black-forest-labs/FLUX.1-dev"
base_model_path = "ostris/Flex.1-alpha"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Loading Transformer...")
prompt = "Photo of a man and a woman in a park, sunny day"
output_root = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "output")
output_path = os.path.join(output_root, "flex_timestep_weights.json")
img_output_path = os.path.join(output_root, "flex_timestep_weights.png")
quantization_type = get_qtype(qtype)
def flush():
torch.cuda.empty_cache()
gc.collect()
pil_to_tensor = transforms.ToTensor()
with torch.no_grad():
transformer = FluxTransformer2DModel.from_pretrained(
base_model_path,
subfolder='transformer',
torch_dtype=dtype
)
transformer.to(device, dtype=dtype)
print("Quantizing Transformer...")
quantize(transformer, weights=quantization_type)
freeze(transformer)
flush()
print("Loading Scheduler...")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(base_model_path, subfolder="scheduler")
print("Loading Autoencoder...")
vae = AutoencoderKL.from_pretrained(base_model_path, subfolder="vae", torch_dtype=dtype)
vae.to(device, dtype=dtype)
flush()
print("Loading Text Encoder...")
tokenizer_2 = T5TokenizerFast.from_pretrained(base_model_path, subfolder="tokenizer_2", torch_dtype=dtype)
text_encoder_2 = T5EncoderModel.from_pretrained(base_model_path, subfolder="text_encoder_2", torch_dtype=dtype)
text_encoder_2.to(device, dtype=dtype)
print("Quantizing Text Encoder...")
quantize(text_encoder_2, weights=get_qtype(qtype))
freeze(text_encoder_2)
flush()
print("Loading CLIP")
text_encoder = CLIPTextModel.from_pretrained(base_model_path, subfolder="text_encoder", torch_dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained(base_model_path, subfolder="tokenizer", torch_dtype=dtype)
text_encoder.to(device, dtype=dtype)
print("Making pipe")
pipe: FluxPipeline = FluxPipeline(
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=None,
tokenizer_2=tokenizer_2,
vae=vae,
transformer=None,
)
pipe.text_encoder_2 = text_encoder_2
pipe.transformer = transformer
pipe.to(device, dtype=dtype)
print("Encoding prompt...")
prompt_embeds, pooled_prompt_embeds, text_ids = pipe.encode_prompt(
prompt,
prompt_2=prompt,
device=device
)
generator = torch.manual_seed(42)
height = 1024
width = 1024
print("Generating image...")
# Fix a bug in diffusers/torch
def callback_on_step_end(pipe, i, t, callback_kwargs):
latents = callback_kwargs["latents"]
if latents.dtype != dtype:
latents = latents.to(dtype)
return {"latents": latents}
img = pipe(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
height=height,
width=height,
num_inference_steps=30,
guidance_scale=3.5,
generator=generator,
callback_on_step_end=callback_on_step_end,
).images[0]
img.save(img_output_path)
print(f"Image saved to {img_output_path}")
print("Encoding image...")
# img is a PIL image. convert it to a -1 to 1 tensor
img = pil_to_tensor(img)
img = img.unsqueeze(0) # add batch dimension
img = img * 2 - 1 # convert to -1 to 1 range
img = img.to(device, dtype=dtype)
latents = vae.encode(img).latent_dist.sample()
shift = vae.config['shift_factor'] if vae.config['shift_factor'] is not None else 0
latents = vae.config['scaling_factor'] * (latents - shift)
num_channels_latents = pipe.transformer.config.in_channels // 4
l_height = 2 * (int(height) // (pipe.vae_scale_factor * 2))
l_width = 2 * (int(width) // (pipe.vae_scale_factor * 2))
packed_latents = pipe._pack_latents(latents, 1, num_channels_latents, l_height, l_width)
packed_latents, latent_image_ids = pipe.prepare_latents(
1,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
packed_latents,
)
print("Calculating timestep weights...")
torch.manual_seed(8675309)
noise = torch.randn_like(packed_latents, device=device, dtype=dtype)
# Create linear timesteps from 1000 to 0
num_train_timesteps = 1000
timesteps_torch = torch.linspace(1000, 1, num_train_timesteps, device='cpu')
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
timestep_weights = torch.zeros(num_train_timesteps, dtype=torch.float32, device=device)
guidance = torch.full([1], 1.0, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
pbar = tqdm(range(num_train_timesteps), desc="loss: 0.000000 scaler: 0.0000")
for i in pbar:
timestep = timesteps[i:i+1].to(device)
t_01 = (timestep / 1000).to(device)
t_01 = t_01.reshape(-1, 1, 1)
noisy_latents = (1.0 - t_01) * packed_latents + t_01 * noise
noise_pred = pipe.transformer(
hidden_states=noisy_latents, # torch.Size([1, 4096, 64])
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
return_dict=False,
)[0]
target = noise - packed_latents
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float())
loss = loss
# determine scaler to multiply loss by to make it 1
scaler = 1.0 / (loss + 1e-6)
timestep_weights[i] = scaler
pbar.set_description(f"loss: {loss.item():.6f} scaler: {scaler.item():.4f}")
print("normalizing timestep weights...")
# normalize the timestep weights so they are a mean of 1.0
timestep_weights = timestep_weights / timestep_weights.mean()
timestep_weights = timestep_weights.cpu().numpy().tolist()
print("Saving timestep weights...")
with open(output_path, 'w') as f:
json.dump(timestep_weights, f)
print(f"Timestep weights saved to {output_path}")
print("Done!")
flush()