Spaces:
Sleeping
Sleeping
import gc | |
import os, sys | |
from tqdm import tqdm | |
import numpy as np | |
import json | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
# set visible devices to 0 | |
# os.environ["CUDA_VISIBLE_DEVICES"] = "0" | |
# protect from formatting | |
if True: | |
import torch | |
from optimum.quanto import freeze, qfloat8, QTensor, qint4 | |
from diffusers import FluxTransformer2DModel, FluxPipeline, AutoencoderKL, FlowMatchEulerDiscreteScheduler | |
from toolkit.util.quantize import quantize, get_qtype | |
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTextModel, CLIPTokenizer | |
from torchvision import transforms | |
qtype = "qfloat8" | |
dtype = torch.bfloat16 | |
# base_model_path = "black-forest-labs/FLUX.1-dev" | |
base_model_path = "ostris/Flex.1-alpha" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
print("Loading Transformer...") | |
prompt = "Photo of a man and a woman in a park, sunny day" | |
output_root = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "output") | |
output_path = os.path.join(output_root, "flex_timestep_weights.json") | |
img_output_path = os.path.join(output_root, "flex_timestep_weights.png") | |
quantization_type = get_qtype(qtype) | |
def flush(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
pil_to_tensor = transforms.ToTensor() | |
with torch.no_grad(): | |
transformer = FluxTransformer2DModel.from_pretrained( | |
base_model_path, | |
subfolder='transformer', | |
torch_dtype=dtype | |
) | |
transformer.to(device, dtype=dtype) | |
print("Quantizing Transformer...") | |
quantize(transformer, weights=quantization_type) | |
freeze(transformer) | |
flush() | |
print("Loading Scheduler...") | |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(base_model_path, subfolder="scheduler") | |
print("Loading Autoencoder...") | |
vae = AutoencoderKL.from_pretrained(base_model_path, subfolder="vae", torch_dtype=dtype) | |
vae.to(device, dtype=dtype) | |
flush() | |
print("Loading Text Encoder...") | |
tokenizer_2 = T5TokenizerFast.from_pretrained(base_model_path, subfolder="tokenizer_2", torch_dtype=dtype) | |
text_encoder_2 = T5EncoderModel.from_pretrained(base_model_path, subfolder="text_encoder_2", torch_dtype=dtype) | |
text_encoder_2.to(device, dtype=dtype) | |
print("Quantizing Text Encoder...") | |
quantize(text_encoder_2, weights=get_qtype(qtype)) | |
freeze(text_encoder_2) | |
flush() | |
print("Loading CLIP") | |
text_encoder = CLIPTextModel.from_pretrained(base_model_path, subfolder="text_encoder", torch_dtype=dtype) | |
tokenizer = CLIPTokenizer.from_pretrained(base_model_path, subfolder="tokenizer", torch_dtype=dtype) | |
text_encoder.to(device, dtype=dtype) | |
print("Making pipe") | |
pipe: FluxPipeline = FluxPipeline( | |
scheduler=scheduler, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_encoder_2=None, | |
tokenizer_2=tokenizer_2, | |
vae=vae, | |
transformer=None, | |
) | |
pipe.text_encoder_2 = text_encoder_2 | |
pipe.transformer = transformer | |
pipe.to(device, dtype=dtype) | |
print("Encoding prompt...") | |
prompt_embeds, pooled_prompt_embeds, text_ids = pipe.encode_prompt( | |
prompt, | |
prompt_2=prompt, | |
device=device | |
) | |
generator = torch.manual_seed(42) | |
height = 1024 | |
width = 1024 | |
print("Generating image...") | |
# Fix a bug in diffusers/torch | |
def callback_on_step_end(pipe, i, t, callback_kwargs): | |
latents = callback_kwargs["latents"] | |
if latents.dtype != dtype: | |
latents = latents.to(dtype) | |
return {"latents": latents} | |
img = pipe( | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
height=height, | |
width=height, | |
num_inference_steps=30, | |
guidance_scale=3.5, | |
generator=generator, | |
callback_on_step_end=callback_on_step_end, | |
).images[0] | |
img.save(img_output_path) | |
print(f"Image saved to {img_output_path}") | |
print("Encoding image...") | |
# img is a PIL image. convert it to a -1 to 1 tensor | |
img = pil_to_tensor(img) | |
img = img.unsqueeze(0) # add batch dimension | |
img = img * 2 - 1 # convert to -1 to 1 range | |
img = img.to(device, dtype=dtype) | |
latents = vae.encode(img).latent_dist.sample() | |
shift = vae.config['shift_factor'] if vae.config['shift_factor'] is not None else 0 | |
latents = vae.config['scaling_factor'] * (latents - shift) | |
num_channels_latents = pipe.transformer.config.in_channels // 4 | |
l_height = 2 * (int(height) // (pipe.vae_scale_factor * 2)) | |
l_width = 2 * (int(width) // (pipe.vae_scale_factor * 2)) | |
packed_latents = pipe._pack_latents(latents, 1, num_channels_latents, l_height, l_width) | |
packed_latents, latent_image_ids = pipe.prepare_latents( | |
1, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
packed_latents, | |
) | |
print("Calculating timestep weights...") | |
torch.manual_seed(8675309) | |
noise = torch.randn_like(packed_latents, device=device, dtype=dtype) | |
# Create linear timesteps from 1000 to 0 | |
num_train_timesteps = 1000 | |
timesteps_torch = torch.linspace(1000, 1, num_train_timesteps, device='cpu') | |
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() | |
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) | |
timestep_weights = torch.zeros(num_train_timesteps, dtype=torch.float32, device=device) | |
guidance = torch.full([1], 1.0, device=device, dtype=torch.float32) | |
guidance = guidance.expand(latents.shape[0]) | |
pbar = tqdm(range(num_train_timesteps), desc="loss: 0.000000 scaler: 0.0000") | |
for i in pbar: | |
timestep = timesteps[i:i+1].to(device) | |
t_01 = (timestep / 1000).to(device) | |
t_01 = t_01.reshape(-1, 1, 1) | |
noisy_latents = (1.0 - t_01) * packed_latents + t_01 * noise | |
noise_pred = pipe.transformer( | |
hidden_states=noisy_latents, # torch.Size([1, 4096, 64]) | |
timestep=timestep / 1000, | |
guidance=guidance, | |
pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
return_dict=False, | |
)[0] | |
target = noise - packed_latents | |
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float()) | |
loss = loss | |
# determine scaler to multiply loss by to make it 1 | |
scaler = 1.0 / (loss + 1e-6) | |
timestep_weights[i] = scaler | |
pbar.set_description(f"loss: {loss.item():.6f} scaler: {scaler.item():.4f}") | |
print("normalizing timestep weights...") | |
# normalize the timestep weights so they are a mean of 1.0 | |
timestep_weights = timestep_weights / timestep_weights.mean() | |
timestep_weights = timestep_weights.cpu().numpy().tolist() | |
print("Saving timestep weights...") | |
with open(output_path, 'w') as f: | |
json.dump(timestep_weights, f) | |
print(f"Timestep weights saved to {output_path}") | |
print("Done!") | |
flush() | |