ai-toolkit / extensions_built_in /ultimate_slider_trainer /UltimateSliderTrainerProcess.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Convert AI-Toolkit to a HF Space
8822914
import copy
import random
from collections import OrderedDict
import os
from contextlib import nullcontext
from typing import Optional, Union, List
from torch.utils.data import ConcatDataset, DataLoader
from toolkit.config_modules import ReferenceDatasetConfig
from toolkit.data_loader import PairedImageDataset
from toolkit.prompt_utils import concat_prompt_embeds, split_prompt_embeds, build_latent_image_batch_for_prompt_pair
from toolkit.stable_diffusion_model import StableDiffusion, PromptEmbeds
from toolkit.train_tools import get_torch_dtype, apply_snr_weight
import gc
from toolkit import train_tools
import torch
from jobs.process import BaseSDTrainProcess
import random
import random
from collections import OrderedDict
from tqdm import tqdm
from toolkit.config_modules import SliderConfig
from toolkit.train_tools import get_torch_dtype, apply_snr_weight
import gc
from toolkit import train_tools
from toolkit.prompt_utils import \
EncodedPromptPair, ACTION_TYPES_SLIDER, \
EncodedAnchor, concat_prompt_pairs, \
concat_anchors, PromptEmbedsCache, encode_prompts_to_cache, build_prompt_pair_batch_from_cache, split_anchors, \
split_prompt_pairs
import torch
def flush():
torch.cuda.empty_cache()
gc.collect()
class UltimateSliderConfig(SliderConfig):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.additional_losses: List[str] = kwargs.get('additional_losses', [])
self.weight_jitter: float = kwargs.get('weight_jitter', 0.0)
self.img_loss_weight: float = kwargs.get('img_loss_weight', 1.0)
self.cfg_loss_weight: float = kwargs.get('cfg_loss_weight', 1.0)
self.datasets: List[ReferenceDatasetConfig] = [ReferenceDatasetConfig(**d) for d in kwargs.get('datasets', [])]
class UltimateSliderTrainerProcess(BaseSDTrainProcess):
sd: StableDiffusion
data_loader: DataLoader = None
def __init__(self, process_id: int, job, config: OrderedDict, **kwargs):
super().__init__(process_id, job, config, **kwargs)
self.prompt_txt_list = None
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.slider_config = UltimateSliderConfig(**self.get_conf('slider', {}))
self.prompt_cache = PromptEmbedsCache()
self.prompt_pairs: list[EncodedPromptPair] = []
self.anchor_pairs: list[EncodedAnchor] = []
# keep track of prompt chunk size
self.prompt_chunk_size = 1
# store a list of all the prompts from the dataset so we can cache it
self.dataset_prompts = []
self.train_with_dataset = self.slider_config.datasets is not None and len(self.slider_config.datasets) > 0
def load_datasets(self):
if self.data_loader is None and \
self.slider_config.datasets is not None and len(self.slider_config.datasets) > 0:
print(f"Loading datasets")
datasets = []
for dataset in self.slider_config.datasets:
print(f" - Dataset: {dataset.pair_folder}")
config = {
'path': dataset.pair_folder,
'size': dataset.size,
'default_prompt': dataset.target_class,
'network_weight': dataset.network_weight,
'pos_weight': dataset.pos_weight,
'neg_weight': dataset.neg_weight,
'pos_folder': dataset.pos_folder,
'neg_folder': dataset.neg_folder,
}
image_dataset = PairedImageDataset(config)
datasets.append(image_dataset)
# capture all the prompts from it so we can cache the embeds
self.dataset_prompts += image_dataset.get_all_prompts()
concatenated_dataset = ConcatDataset(datasets)
self.data_loader = DataLoader(
concatenated_dataset,
batch_size=self.train_config.batch_size,
shuffle=True,
num_workers=2
)
def before_model_load(self):
pass
def hook_before_train_loop(self):
# load any datasets if they were passed
self.load_datasets()
# read line by line from file
if self.slider_config.prompt_file:
self.print(f"Loading prompt file from {self.slider_config.prompt_file}")
with open(self.slider_config.prompt_file, 'r', encoding='utf-8') as f:
self.prompt_txt_list = f.readlines()
# clean empty lines
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]
self.print(f"Found {len(self.prompt_txt_list)} prompts.")
if not self.slider_config.prompt_tensors:
print(f"Prompt tensors not found. Building prompt tensors for {self.train_config.steps} steps.")
# shuffle
random.shuffle(self.prompt_txt_list)
# trim to max steps
self.prompt_txt_list = self.prompt_txt_list[:self.train_config.steps]
# trim list to our max steps
cache = PromptEmbedsCache()
# get encoded latents for our prompts
with torch.no_grad():
# list of neutrals. Can come from file or be empty
neutral_list = self.prompt_txt_list if self.prompt_txt_list is not None else [""]
# build the prompts to cache
prompts_to_cache = []
for neutral in neutral_list:
for target in self.slider_config.targets:
prompt_list = [
f"{target.target_class}", # target_class
f"{target.target_class} {neutral}", # target_class with neutral
f"{target.positive}", # positive_target
f"{target.positive} {neutral}", # positive_target with neutral
f"{target.negative}", # negative_target
f"{target.negative} {neutral}", # negative_target with neutral
f"{neutral}", # neutral
f"{target.positive} {target.negative}", # both targets
f"{target.negative} {target.positive}", # both targets reverse
]
prompts_to_cache += prompt_list
# remove duplicates
prompts_to_cache = list(dict.fromkeys(prompts_to_cache))
# trim to max steps if max steps is lower than prompt count
prompts_to_cache = prompts_to_cache[:self.train_config.steps]
if len(self.dataset_prompts) > 0:
# add the prompts from the dataset
prompts_to_cache += self.dataset_prompts
# encode them
cache = encode_prompts_to_cache(
prompt_list=prompts_to_cache,
sd=self.sd,
cache=cache,
prompt_tensor_file=self.slider_config.prompt_tensors
)
prompt_pairs = []
prompt_batches = []
for neutral in tqdm(neutral_list, desc="Building Prompt Pairs", leave=False):
for target in self.slider_config.targets:
prompt_pair_batch = build_prompt_pair_batch_from_cache(
cache=cache,
target=target,
neutral=neutral,
)
if self.slider_config.batch_full_slide:
# concat the prompt pairs
# this allows us to run the entire 4 part process in one shot (for slider)
self.prompt_chunk_size = 4
concat_prompt_pair_batch = concat_prompt_pairs(prompt_pair_batch).to('cpu')
prompt_pairs += [concat_prompt_pair_batch]
else:
self.prompt_chunk_size = 1
# do them one at a time (probably not necessary after new optimizations)
prompt_pairs += [x.to('cpu') for x in prompt_pair_batch]
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
# if text encoder is list
if isinstance(self.sd.text_encoder, list):
for encoder in self.sd.text_encoder:
encoder.to("cpu")
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
self.prompt_pairs = prompt_pairs
# end hook_before_train_loop
# move vae to device so we can encode on the fly
# todo cache latents
self.sd.vae.to(self.device_torch)
self.sd.vae.eval()
self.sd.vae.requires_grad_(False)
if self.train_config.gradient_checkpointing:
# may get disabled elsewhere
self.sd.unet.enable_gradient_checkpointing()
flush()
# end hook_before_train_loop
def hook_train_loop(self, batch):
dtype = get_torch_dtype(self.train_config.dtype)
with torch.no_grad():
### LOOP SETUP ###
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
### TARGET_PROMPTS ###
# get a random pair
prompt_pair: EncodedPromptPair = self.prompt_pairs[
torch.randint(0, len(self.prompt_pairs), (1,)).item()
]
# move to device and dtype
prompt_pair.to(self.device_torch, dtype=dtype)
### PREP REFERENCE IMAGES ###
imgs, prompts, network_weights = batch
network_pos_weight, network_neg_weight = network_weights
if isinstance(network_pos_weight, torch.Tensor):
network_pos_weight = network_pos_weight.item()
if isinstance(network_neg_weight, torch.Tensor):
network_neg_weight = network_neg_weight.item()
# get an array of random floats between -weight_jitter and weight_jitter
weight_jitter = self.slider_config.weight_jitter
if weight_jitter > 0.0:
jitter_list = random.uniform(-weight_jitter, weight_jitter)
network_pos_weight += jitter_list
network_neg_weight += (jitter_list * -1.0)
# if items in network_weight list are tensors, convert them to floats
imgs: torch.Tensor = imgs.to(self.device_torch, dtype=dtype)
# split batched images in half so left is negative and right is positive
negative_images, positive_images = torch.chunk(imgs, 2, dim=3)
height = positive_images.shape[2]
width = positive_images.shape[3]
batch_size = positive_images.shape[0]
positive_latents = self.sd.encode_images(positive_images)
negative_latents = self.sd.encode_images(negative_images)
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
timesteps = torch.randint(0, self.train_config.max_denoising_steps, (1,), device=self.device_torch)
current_timestep_index = timesteps.item()
current_timestep = noise_scheduler.timesteps[current_timestep_index]
timesteps = timesteps.long()
# get noise
noise_positive = self.sd.get_latent_noise(
pixel_height=height,
pixel_width=width,
batch_size=batch_size,
noise_offset=self.train_config.noise_offset,
).to(self.device_torch, dtype=dtype)
noise_negative = noise_positive.clone()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_positive_latents = noise_scheduler.add_noise(positive_latents, noise_positive, timesteps)
noisy_negative_latents = noise_scheduler.add_noise(negative_latents, noise_negative, timesteps)
### CFG SLIDER TRAINING PREP ###
# get CFG txt latents
noisy_cfg_latents = build_latent_image_batch_for_prompt_pair(
pos_latent=noisy_positive_latents,
neg_latent=noisy_negative_latents,
prompt_pair=prompt_pair,
prompt_chunk_size=self.prompt_chunk_size,
)
noisy_cfg_latents.requires_grad = False
assert not self.network.is_active
# 4.20 GB RAM for 512x512
positive_latents = self.sd.predict_noise(
latents=noisy_cfg_latents,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair.positive_target, # negative prompt
prompt_pair.negative_target, # positive prompt
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
positive_latents.requires_grad = False
neutral_latents = self.sd.predict_noise(
latents=noisy_cfg_latents,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair.positive_target, # negative prompt
prompt_pair.empty_prompt, # positive prompt (normally neutral
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
neutral_latents.requires_grad = False
unconditional_latents = self.sd.predict_noise(
latents=noisy_cfg_latents,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair.positive_target, # negative prompt
prompt_pair.positive_target, # positive prompt
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
unconditional_latents.requires_grad = False
positive_latents_chunks = torch.chunk(positive_latents, self.prompt_chunk_size, dim=0)
neutral_latents_chunks = torch.chunk(neutral_latents, self.prompt_chunk_size, dim=0)
unconditional_latents_chunks = torch.chunk(unconditional_latents, self.prompt_chunk_size, dim=0)
prompt_pair_chunks = split_prompt_pairs(prompt_pair, self.prompt_chunk_size)
noisy_cfg_latents_chunks = torch.chunk(noisy_cfg_latents, self.prompt_chunk_size, dim=0)
assert len(prompt_pair_chunks) == len(noisy_cfg_latents_chunks)
noisy_latents = torch.cat([noisy_positive_latents, noisy_negative_latents], dim=0)
noise = torch.cat([noise_positive, noise_negative], dim=0)
timesteps = torch.cat([timesteps, timesteps], dim=0)
network_multiplier = [network_pos_weight * 1.0, network_neg_weight * -1.0]
flush()
loss_float = None
loss_mirror_float = None
self.optimizer.zero_grad()
noisy_latents.requires_grad = False
# TODO allow both processed to train text encoder, for now, we just to unet and cache all text encodes
# if training text encoder enable grads, else do context of no grad
# with torch.set_grad_enabled(self.train_config.train_text_encoder):
# # text encoding
# embedding_list = []
# # embed the prompts
# for prompt in prompts:
# embedding = self.sd.encode_prompt(prompt).to(self.device_torch, dtype=dtype)
# embedding_list.append(embedding)
# conditional_embeds = concat_prompt_embeds(embedding_list)
# conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
if self.train_with_dataset:
embedding_list = []
with torch.set_grad_enabled(self.train_config.train_text_encoder):
for prompt in prompts:
# get embedding form cache
embedding = self.prompt_cache[prompt]
embedding = embedding.to(self.device_torch, dtype=dtype)
embedding_list.append(embedding)
conditional_embeds = concat_prompt_embeds(embedding_list)
# double up so we can do both sides of the slider
conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
else:
# throw error. Not supported yet
raise Exception("Datasets and targets required for ultimate slider")
if self.model_config.is_xl:
# todo also allow for setting this for low ram in general, but sdxl spikes a ton on back prop
network_multiplier_list = network_multiplier
noisy_latent_list = torch.chunk(noisy_latents, 2, dim=0)
noise_list = torch.chunk(noise, 2, dim=0)
timesteps_list = torch.chunk(timesteps, 2, dim=0)
conditional_embeds_list = split_prompt_embeds(conditional_embeds)
else:
network_multiplier_list = [network_multiplier]
noisy_latent_list = [noisy_latents]
noise_list = [noise]
timesteps_list = [timesteps]
conditional_embeds_list = [conditional_embeds]
## DO REFERENCE IMAGE TRAINING ##
reference_image_losses = []
# allow to chunk it out to save vram
for network_multiplier, noisy_latents, noise, timesteps, conditional_embeds in zip(
network_multiplier_list, noisy_latent_list, noise_list, timesteps_list, conditional_embeds_list
):
with self.network:
assert self.network.is_active
self.network.multiplier = network_multiplier
noise_pred = self.sd.predict_noise(
latents=noisy_latents.to(self.device_torch, dtype=dtype),
conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype),
timestep=timesteps,
)
noise = noise.to(self.device_torch, dtype=dtype)
if self.sd.prediction_type == 'v_prediction':
# v-parameterization training
target = noise_scheduler.get_velocity(noisy_latents, noise, timesteps)
else:
target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
# todo add snr gamma here
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
# add min_snr_gamma
loss = apply_snr_weight(loss, timesteps, noise_scheduler, self.train_config.min_snr_gamma)
loss = loss.mean()
loss = loss * self.slider_config.img_loss_weight
loss_slide_float = loss.item()
loss_float = loss.item()
reference_image_losses.append(loss_float)
# back propagate loss to free ram
loss.backward()
flush()
## DO CFG SLIDER TRAINING ##
cfg_loss_list = []
with self.network:
assert self.network.is_active
for prompt_pair_chunk, \
noisy_cfg_latent_chunk, \
positive_latents_chunk, \
neutral_latents_chunk, \
unconditional_latents_chunk \
in zip(
prompt_pair_chunks,
noisy_cfg_latents_chunks,
positive_latents_chunks,
neutral_latents_chunks,
unconditional_latents_chunks,
):
self.network.multiplier = prompt_pair_chunk.multiplier_list
target_latents = self.sd.predict_noise(
latents=noisy_cfg_latent_chunk,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair_chunk.positive_target, # negative prompt
prompt_pair_chunk.target_class, # positive prompt
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
guidance_scale = 1.0
offset = guidance_scale * (positive_latents_chunk - unconditional_latents_chunk)
# make offset multiplier based on actions
offset_multiplier_list = []
for action in prompt_pair_chunk.action_list:
if action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE:
offset_multiplier_list += [-1.0]
elif action == ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE:
offset_multiplier_list += [1.0]
offset_multiplier = torch.tensor(offset_multiplier_list).to(offset.device, dtype=offset.dtype)
# make offset multiplier match rank of offset
offset_multiplier = offset_multiplier.view(offset.shape[0], 1, 1, 1)
offset *= offset_multiplier
offset_neutral = neutral_latents_chunk
# offsets are already adjusted on a per-batch basis
offset_neutral += offset
# 16.15 GB RAM for 512x512 -> 4.20GB RAM for 512x512 with new grad_checkpointing
loss = torch.nn.functional.mse_loss(target_latents.float(), offset_neutral.float(), reduction="none")
loss = loss.mean([1, 2, 3])
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
# match batch size
timesteps_index_list = [current_timestep_index for _ in range(target_latents.shape[0])]
# add min_snr_gamma
loss = apply_snr_weight(loss, timesteps_index_list, noise_scheduler,
self.train_config.min_snr_gamma)
loss = loss.mean() * prompt_pair_chunk.weight * self.slider_config.cfg_loss_weight
loss.backward()
cfg_loss_list.append(loss.item())
del target_latents
del offset_neutral
del loss
flush()
# apply gradients
optimizer.step()
lr_scheduler.step()
# reset network
self.network.multiplier = 1.0
reference_image_loss = sum(reference_image_losses) / len(reference_image_losses) if len(
reference_image_losses) > 0 else 0.0
cfg_loss = sum(cfg_loss_list) / len(cfg_loss_list) if len(cfg_loss_list) > 0 else 0.0
loss_dict = OrderedDict({
'loss/img': reference_image_loss,
'loss/cfg': cfg_loss,
})
return loss_dict
# end hook_train_loop