jbilcke-hf's picture
jbilcke-hf HF Staff
Convert AI-Toolkit to a HF Space
8822914
from .hidream_model import HidreamModel
from .src.pipelines.hidream_image.pipeline_hidream_image_editing import (
HiDreamImageEditingPipeline,
)
from .src.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
from toolkit.accelerator import unwrap_model
import torch
from toolkit.prompt_utils import PromptEmbeds
from toolkit.config_modules import GenerateImageConfig
from diffusers.models import HiDreamImageTransformer2DModel
import torch.nn.functional as F
from PIL import Image
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
class HidreamE1Model(HidreamModel):
arch = "hidream_e1"
hidream_transformer_class = HiDreamImageTransformer2DModel
hidream_pipeline_class = HiDreamImageEditingPipeline
def get_generation_pipeline(self):
scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=1000, shift=3.0, use_dynamic_shifting=False
)
pipeline: HiDreamImageEditingPipeline = HiDreamImageEditingPipeline(
scheduler=scheduler,
vae=self.vae,
text_encoder=self.text_encoder[0],
tokenizer=self.tokenizer[0],
text_encoder_2=self.text_encoder[1],
tokenizer_2=self.tokenizer[1],
text_encoder_3=self.text_encoder[2],
tokenizer_3=self.tokenizer[2],
text_encoder_4=self.text_encoder[3],
tokenizer_4=self.tokenizer[3],
transformer=unwrap_model(self.model),
aggressive_unloading=self.low_vram,
)
pipeline = pipeline.to(self.device_torch)
return pipeline
def generate_single_image(
self,
pipeline: HiDreamImageEditingPipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
if gen_config.ctrl_img is None:
raise ValueError(
"Control image is required for Flux Kontext model generation."
)
else:
control_img = Image.open(gen_config.ctrl_img)
control_img = control_img.convert("RGB")
# resize to width and height
if control_img.size != (gen_config.width, gen_config.height):
control_img = control_img.resize(
(gen_config.width, gen_config.height), Image.BILINEAR
)
img = pipeline(
prompt_embeds_t5=conditional_embeds.text_embeds[0],
prompt_embeds_llama3=conditional_embeds.text_embeds[1],
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
negative_prompt_embeds_t5=unconditional_embeds.text_embeds[0],
negative_prompt_embeds_llama3=unconditional_embeds.text_embeds[1],
negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
generator=generator,
image=control_img,
**extra,
).images[0]
return img
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
self.text_encoder_to(self.device_torch, dtype=self.torch_dtype)
max_sequence_length = 128
(
prompt_embeds_t5,
negative_prompt_embeds_t5,
prompt_embeds_llama3,
negative_prompt_embeds_llama3,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.pipeline.encode_prompt(
prompt=prompt,
prompt_2=prompt,
prompt_3=prompt,
prompt_4=prompt,
device=self.device_torch,
dtype=self.torch_dtype,
num_images_per_prompt=1,
max_sequence_length=max_sequence_length,
do_classifier_free_guidance=False,
)
prompt_embeds = [prompt_embeds_t5, prompt_embeds_llama3]
pe = PromptEmbeds([prompt_embeds, pooled_prompt_embeds])
return pe
def condition_noisy_latents(
self, latents: torch.Tensor, batch: "DataLoaderBatchDTO"
):
with torch.no_grad():
control_tensor = batch.control_tensor
if control_tensor is not None:
self.vae.to(self.device_torch)
# we are not packed here, so we just need to pass them so we can pack them later
control_tensor = control_tensor * 2 - 1
control_tensor = control_tensor.to(
self.vae_device_torch, dtype=self.torch_dtype
)
# if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
if batch.tensor is not None:
target_h, target_w = batch.tensor.shape[2], batch.tensor.shape[3]
else:
# When caching latents, batch.tensor is None. We get the size from the file_items instead.
target_h = batch.file_items[0].crop_height
target_w = batch.file_items[0].crop_width
if (
control_tensor.shape[2] != target_h
or control_tensor.shape[3] != target_w
):
control_tensor = F.interpolate(
control_tensor, size=(target_h, target_w), mode="bilinear"
)
control_latent = self.encode_images(control_tensor).to(
latents.device, latents.dtype
)
latents = torch.cat((latents, control_latent), dim=1)
return latents.detach()
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
**kwargs,
):
with torch.no_grad():
# make sure config is set
self.model.config.force_inference_output = True
has_control = False
lat_size = latent_model_input.shape[-1]
if latent_model_input.shape[1] == 32:
# chunk it and stack it on batch dimension
# dont update batch size for img_its
lat, control = torch.chunk(latent_model_input, 2, dim=1)
latent_model_input = torch.cat([lat, control], dim=-1)
has_control = True
dtype = self.model.dtype
device = self.device_torch
text_embeds = text_embeddings.text_embeds
# run the to for the list
text_embeds = [te.to(device, dtype=dtype) for te in text_embeds]
noise_pred = self.transformer(
hidden_states=latent_model_input,
timesteps=timestep,
encoder_hidden_states_t5=text_embeds[0],
encoder_hidden_states_llama3=text_embeds[1],
pooled_embeds=text_embeddings.pooled_embeds.to(device, dtype=dtype),
return_dict=False,
)[0]
if has_control:
noise_pred = -1.0 * noise_pred[..., :lat_size]
else:
noise_pred = -1.0 * noise_pred
return noise_pred