Spaces:
Paused
Paused
import os | |
from typing import TYPE_CHECKING, List | |
import torch | |
import torchvision | |
import yaml | |
from toolkit import train_tools | |
from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
from PIL import Image | |
from toolkit.models.base_model import BaseModel | |
from diffusers import FluxTransformer2DModel, AutoencoderKL, FluxKontextPipeline | |
from toolkit.basic import flush | |
from toolkit.prompt_utils import PromptEmbeds | |
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler | |
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance | |
from toolkit.dequantize import patch_dequantization_on_save | |
from toolkit.accelerator import get_accelerator, unwrap_model | |
from optimum.quanto import freeze, QTensor | |
from toolkit.util.mask import generate_random_mask, random_dialate_mask | |
from toolkit.util.quantize import quantize, get_qtype | |
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer | |
from einops import rearrange, repeat | |
import random | |
import torch.nn.functional as F | |
if TYPE_CHECKING: | |
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
scheduler_config = { | |
"base_image_seq_len": 256, | |
"base_shift": 0.5, | |
"max_image_seq_len": 4096, | |
"max_shift": 1.15, | |
"num_train_timesteps": 1000, | |
"shift": 3.0, | |
"use_dynamic_shifting": True | |
} | |
class FluxKontextModel(BaseModel): | |
arch = "flux_kontext" | |
def __init__( | |
self, | |
device, | |
model_config: ModelConfig, | |
dtype='bf16', | |
custom_pipeline=None, | |
noise_scheduler=None, | |
**kwargs | |
): | |
super().__init__( | |
device, | |
model_config, | |
dtype, | |
custom_pipeline, | |
noise_scheduler, | |
**kwargs | |
) | |
self.is_flow_matching = True | |
self.is_transformer = True | |
self.target_lora_modules = ['FluxTransformer2DModel'] | |
# static method to get the noise scheduler | |
def get_train_scheduler(): | |
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) | |
def get_bucket_divisibility(self): | |
return 16 | |
def load_model(self): | |
dtype = self.torch_dtype | |
self.print_and_status_update("Loading Flux Kontext model") | |
# will be updated if we detect a existing checkpoint in training folder | |
model_path = self.model_config.name_or_path | |
# this is the original path put in the model directory | |
# it is here because for finetuning we only save the transformer usually | |
# so we need this for the VAE, te, etc | |
base_model_path = self.model_config.extras_name_or_path | |
transformer_path = model_path | |
transformer_subfolder = 'transformer' | |
if os.path.exists(transformer_path): | |
transformer_subfolder = None | |
transformer_path = os.path.join(transformer_path, 'transformer') | |
# check if the path is a full checkpoint. | |
te_folder_path = os.path.join(model_path, 'text_encoder') | |
# if we have the te, this folder is a full checkpoint, use it as the base | |
if os.path.exists(te_folder_path): | |
base_model_path = model_path | |
self.print_and_status_update("Loading transformer") | |
transformer = FluxTransformer2DModel.from_pretrained( | |
transformer_path, | |
subfolder=transformer_subfolder, | |
torch_dtype=dtype | |
) | |
transformer.to(self.quantize_device, dtype=dtype) | |
if self.model_config.quantize: | |
# patch the state dict method | |
patch_dequantization_on_save(transformer) | |
quantization_type = get_qtype(self.model_config.qtype) | |
self.print_and_status_update("Quantizing transformer") | |
quantize(transformer, weights=quantization_type, | |
**self.model_config.quantize_kwargs) | |
freeze(transformer) | |
transformer.to(self.device_torch) | |
else: | |
transformer.to(self.device_torch, dtype=dtype) | |
flush() | |
self.print_and_status_update("Loading T5") | |
tokenizer_2 = T5TokenizerFast.from_pretrained( | |
base_model_path, subfolder="tokenizer_2", torch_dtype=dtype | |
) | |
text_encoder_2 = T5EncoderModel.from_pretrained( | |
base_model_path, subfolder="text_encoder_2", torch_dtype=dtype | |
) | |
text_encoder_2.to(self.device_torch, dtype=dtype) | |
flush() | |
if self.model_config.quantize_te: | |
self.print_and_status_update("Quantizing T5") | |
quantize(text_encoder_2, weights=get_qtype( | |
self.model_config.qtype)) | |
freeze(text_encoder_2) | |
flush() | |
self.print_and_status_update("Loading CLIP") | |
text_encoder = CLIPTextModel.from_pretrained( | |
base_model_path, subfolder="text_encoder", torch_dtype=dtype) | |
tokenizer = CLIPTokenizer.from_pretrained( | |
base_model_path, subfolder="tokenizer", torch_dtype=dtype) | |
text_encoder.to(self.device_torch, dtype=dtype) | |
self.print_and_status_update("Loading VAE") | |
vae = AutoencoderKL.from_pretrained( | |
base_model_path, subfolder="vae", torch_dtype=dtype) | |
self.noise_scheduler = FluxKontextModel.get_train_scheduler() | |
self.print_and_status_update("Making pipe") | |
pipe: FluxKontextPipeline = FluxKontextPipeline( | |
scheduler=self.noise_scheduler, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_encoder_2=None, | |
tokenizer_2=tokenizer_2, | |
vae=vae, | |
transformer=None, | |
) | |
# for quantization, it works best to do these after making the pipe | |
pipe.text_encoder_2 = text_encoder_2 | |
pipe.transformer = transformer | |
self.print_and_status_update("Preparing Model") | |
text_encoder = [pipe.text_encoder, pipe.text_encoder_2] | |
tokenizer = [pipe.tokenizer, pipe.tokenizer_2] | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
# just to make sure everything is on the right device and dtype | |
text_encoder[0].to(self.device_torch) | |
text_encoder[0].requires_grad_(False) | |
text_encoder[0].eval() | |
text_encoder[1].to(self.device_torch) | |
text_encoder[1].requires_grad_(False) | |
text_encoder[1].eval() | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
# save it to the model class | |
self.vae = vae | |
self.text_encoder = text_encoder # list of text encoders | |
self.tokenizer = tokenizer # list of tokenizers | |
self.model = pipe.transformer | |
self.pipeline = pipe | |
self.print_and_status_update("Model Loaded") | |
def get_generation_pipeline(self): | |
scheduler = FluxKontextModel.get_train_scheduler() | |
pipeline: FluxKontextPipeline = FluxKontextPipeline( | |
scheduler=scheduler, | |
text_encoder=unwrap_model(self.text_encoder[0]), | |
tokenizer=self.tokenizer[0], | |
text_encoder_2=unwrap_model(self.text_encoder[1]), | |
tokenizer_2=self.tokenizer[1], | |
vae=unwrap_model(self.vae), | |
transformer=unwrap_model(self.transformer) | |
) | |
pipeline = pipeline.to(self.device_torch) | |
return pipeline | |
def generate_single_image( | |
self, | |
pipeline: FluxKontextPipeline, | |
gen_config: GenerateImageConfig, | |
conditional_embeds: PromptEmbeds, | |
unconditional_embeds: PromptEmbeds, | |
generator: torch.Generator, | |
extra: dict, | |
): | |
if gen_config.ctrl_img is None: | |
raise ValueError( | |
"Control image is required for Flux Kontext model generation." | |
) | |
else: | |
control_img = Image.open(gen_config.ctrl_img) | |
control_img = control_img.convert("RGB") | |
# resize to width and height | |
if control_img.size != (gen_config.width, gen_config.height): | |
control_img = control_img.resize( | |
(gen_config.width, gen_config.height), Image.BILINEAR | |
) | |
gen_config.width = int(gen_config.width // 16 * 16) | |
gen_config.height = int(gen_config.height // 16 * 16) | |
img = pipeline( | |
image=control_img, | |
prompt_embeds=conditional_embeds.text_embeds, | |
pooled_prompt_embeds=conditional_embeds.pooled_embeds, | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
generator=generator, | |
max_area=gen_config.height * gen_config.width, | |
_auto_resize=False, | |
**extra | |
).images[0] | |
return img | |
def get_noise_prediction( | |
self, | |
latent_model_input: torch.Tensor, | |
timestep: torch.Tensor, # 0 to 1000 scale | |
text_embeddings: PromptEmbeds, | |
guidance_embedding_scale: float, | |
bypass_guidance_embedding: bool, | |
**kwargs | |
): | |
with torch.no_grad(): | |
bs, c, h, w = latent_model_input.shape | |
# if we have a control on the channel dimension, put it on the batch for packing | |
has_control = False | |
if latent_model_input.shape[1] == 32: | |
# chunk it and stack it on batch dimension | |
# dont update batch size for img_its | |
lat, control = torch.chunk(latent_model_input, 2, dim=1) | |
latent_model_input = torch.cat([lat, control], dim=0) | |
has_control = True | |
latent_model_input_packed = rearrange( | |
latent_model_input, | |
"b c (h ph) (w pw) -> b (h w) (c ph pw)", | |
ph=2, | |
pw=2 | |
) | |
img_ids = torch.zeros(h // 2, w // 2, 3) | |
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
img_ids = repeat(img_ids, "h w c -> b (h w) c", | |
b=bs).to(self.device_torch) | |
# handle control image ids | |
if has_control: | |
ctrl_ids = img_ids.clone() | |
ctrl_ids[..., 0] = 1 | |
img_ids = torch.cat([img_ids, ctrl_ids], dim=1) | |
txt_ids = torch.zeros( | |
bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch) | |
# # handle guidance | |
if self.unet_unwrapped.config.guidance_embeds: | |
if isinstance(guidance_embedding_scale, list): | |
guidance = torch.tensor( | |
guidance_embedding_scale, device=self.device_torch) | |
else: | |
guidance = torch.tensor( | |
[guidance_embedding_scale], device=self.device_torch) | |
# Expand guidance to match original batch_size | |
guidance = guidance.expand(bs) | |
else: | |
guidance = None | |
if bypass_guidance_embedding: | |
bypass_flux_guidance(self.unet) | |
cast_dtype = self.unet.dtype | |
# changes from orig implementation | |
if txt_ids.ndim == 3: | |
txt_ids = txt_ids[0] | |
if img_ids.ndim == 3: | |
img_ids = img_ids[0] | |
latent_size = latent_model_input_packed.shape[1] | |
# move the kontext channels. We have them on batch dimension to here, but need to put them on the latent dimension | |
if has_control: | |
latent, control = torch.chunk(latent_model_input_packed, 2, dim=0) | |
latent_model_input_packed = torch.cat( | |
[latent, control], dim=1 | |
) | |
latent_size = latent.shape[1] | |
noise_pred = self.unet( | |
hidden_states=latent_model_input_packed.to( | |
self.device_torch, cast_dtype), | |
timestep=timestep / 1000, | |
encoder_hidden_states=text_embeddings.text_embeds.to( | |
self.device_torch, cast_dtype), | |
pooled_projections=text_embeddings.pooled_embeds.to( | |
self.device_torch, cast_dtype), | |
txt_ids=txt_ids, | |
img_ids=img_ids, | |
guidance=guidance, | |
return_dict=False, | |
**kwargs, | |
)[0] | |
# remove kontext image conditioning | |
noise_pred = noise_pred[:, :latent_size] | |
if isinstance(noise_pred, QTensor): | |
noise_pred = noise_pred.dequantize() | |
noise_pred = rearrange( | |
noise_pred, | |
"b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
h=latent_model_input.shape[2] // 2, | |
w=latent_model_input.shape[3] // 2, | |
ph=2, | |
pw=2, | |
c=self.vae.config.latent_channels | |
) | |
if bypass_guidance_embedding: | |
restore_flux_guidance(self.unet) | |
return noise_pred | |
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: | |
if self.pipeline.text_encoder.device != self.device_torch: | |
self.pipeline.text_encoder.to(self.device_torch) | |
prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux( | |
self.tokenizer, | |
self.text_encoder, | |
prompt, | |
max_length=512, | |
) | |
pe = PromptEmbeds( | |
prompt_embeds | |
) | |
pe.pooled_embeds = pooled_prompt_embeds | |
return pe | |
def get_model_has_grad(self): | |
# return from a weight if it has grad | |
return self.model.proj_out.weight.requires_grad | |
def get_te_has_grad(self): | |
# return from a weight if it has grad | |
return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad | |
def save_model(self, output_path, meta, save_dtype): | |
# only save the unet | |
transformer: FluxTransformer2DModel = unwrap_model(self.model) | |
transformer.save_pretrained( | |
save_directory=os.path.join(output_path, 'transformer'), | |
safe_serialization=True, | |
) | |
meta_path = os.path.join(output_path, 'aitk_meta.yaml') | |
with open(meta_path, 'w') as f: | |
yaml.dump(meta, f) | |
def get_loss_target(self, *args, **kwargs): | |
noise = kwargs.get('noise') | |
batch = kwargs.get('batch') | |
return (noise - batch.latents).detach() | |
def condition_noisy_latents(self, latents: torch.Tensor, batch:'DataLoaderBatchDTO'): | |
with torch.no_grad(): | |
control_tensor = batch.control_tensor | |
if control_tensor is not None: | |
self.vae.to(self.device_torch) | |
# we are not packed here, so we just need to pass them so we can pack them later | |
control_tensor = control_tensor * 2 - 1 | |
control_tensor = control_tensor.to(self.vae_device_torch, dtype=self.torch_dtype) | |
# if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it | |
if batch.tensor is not None: | |
target_h, target_w = batch.tensor.shape[2], batch.tensor.shape[3] | |
else: | |
# When caching latents, batch.tensor is None. We get the size from the file_items instead. | |
target_h = batch.file_items[0].crop_height | |
target_w = batch.file_items[0].crop_width | |
if control_tensor.shape[2] != target_h or control_tensor.shape[3] != target_w: | |
control_tensor = F.interpolate(control_tensor, size=(target_h, target_w), mode='bilinear') | |
control_latent = self.encode_images(control_tensor).to(latents.device, latents.dtype) | |
latents = torch.cat((latents, control_latent), dim=1) | |
return latents.detach() | |
def get_base_model_version(self): | |
return "flux.1_kontext" |