Spaces:
Paused
Paused
import torch | |
from toolkit.basic import flush | |
from transformers import AutoTokenizer, UMT5EncoderModel | |
from diffusers import WanPipeline, WanTransformer3DModel, AutoencoderKLWan | |
import torch | |
from diffusers import FlowMatchEulerDiscreteScheduler | |
from typing import List | |
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput | |
from diffusers.pipelines.wan.pipeline_wan import XLA_AVAILABLE | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from typing import Any, Callable, Dict, List, Optional, Union | |
class Wan22Pipeline(WanPipeline): | |
def __init__( | |
self, | |
tokenizer: AutoTokenizer, | |
text_encoder: UMT5EncoderModel, | |
transformer: WanTransformer3DModel, | |
vae: AutoencoderKLWan, | |
scheduler: FlowMatchEulerDiscreteScheduler, | |
transformer_2: Optional[WanTransformer3DModel] = None, | |
boundary_ratio: Optional[float] = None, | |
expand_timesteps: bool = False, # Wan2.2 ti2v | |
device: torch.device = torch.device("cuda"), | |
aggressive_offload: bool = False, | |
): | |
super().__init__( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
transformer=transformer, | |
transformer_2=transformer_2, | |
boundary_ratio=boundary_ratio, | |
expand_timesteps=expand_timesteps, | |
vae=vae, | |
scheduler=scheduler, | |
) | |
self._aggressive_offload = aggressive_offload | |
self._exec_device = device | |
def _execution_device(self): | |
return self._exec_device | |
def __call__( | |
self: WanPipeline, | |
prompt: Union[str, List[str]] = None, | |
negative_prompt: Union[str, List[str]] = None, | |
height: int = 480, | |
width: int = 832, | |
num_frames: int = 81, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 5.0, | |
guidance_scale_2: Optional[float] = None, | |
num_videos_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, | |
List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "np", | |
return_dict: bool = True, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], | |
PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
noise_mask: Optional[torch.Tensor] = None, | |
): | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
# unload vae and transformer | |
vae_device = self.vae.device | |
transformer_device = self.transformer.device | |
text_encoder_device = self.text_encoder.device | |
device = self._exec_device | |
if self._aggressive_offload: | |
print("Unloading vae") | |
self.vae.to("cpu") | |
print("Unloading transformer") | |
self.transformer.to("cpu") | |
if self.transformer_2 is not None: | |
self.transformer_2.to("cpu") | |
self.text_encoder.to(device) | |
flush() | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
negative_prompt, | |
height, | |
width, | |
prompt_embeds, | |
negative_prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
guidance_scale_2 | |
) | |
if self.config.boundary_ratio is not None and guidance_scale_2 is None: | |
guidance_scale_2 = guidance_scale | |
self._guidance_scale = guidance_scale | |
self._guidance_scale_2 = guidance_scale_2 | |
self._attention_kwargs = attention_kwargs | |
self._current_timestep = None | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# 3. Encode input prompt | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
num_videos_per_prompt=num_videos_per_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
) | |
if self._aggressive_offload: | |
# unload text encoder | |
print("Unloading text encoder") | |
self.text_encoder.to("cpu") | |
self.transformer.to(device) | |
flush() | |
transformer_dtype = self.transformer.dtype | |
prompt_embeds = prompt_embeds.to(device, transformer_dtype) | |
if negative_prompt_embeds is not None: | |
negative_prompt_embeds = negative_prompt_embeds.to( | |
device, transformer_dtype) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
num_frames, | |
torch.float32, | |
device, | |
generator, | |
latents, | |
) | |
mask = noise_mask | |
if mask is None: | |
mask = torch.ones(latents.shape, dtype=torch.float32, device=device) | |
# 6. Denoising loop | |
num_warmup_steps = len(timesteps) - \ | |
num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
if self.config.boundary_ratio is not None: | |
boundary_timestep = self.config.boundary_ratio * self.scheduler.config.num_train_timesteps | |
else: | |
boundary_timestep = None | |
current_model = self.transformer | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
self._current_timestep = t | |
if boundary_timestep is None or t >= boundary_timestep: | |
if self._aggressive_offload and current_model != self.transformer: | |
if self.transformer_2 is not None: | |
self.transformer_2.to("cpu") | |
self.transformer.to(device) | |
# wan2.1 or high-noise stage in wan2.2 | |
current_model = self.transformer | |
current_guidance_scale = guidance_scale | |
else: | |
if self._aggressive_offload and current_model != self.transformer_2: | |
if self.transformer is not None: | |
self.transformer.to("cpu") | |
if self.transformer_2 is not None: | |
self.transformer_2.to(device) | |
# low-noise stage in wan2.2 | |
current_model = self.transformer_2 | |
current_guidance_scale = guidance_scale_2 | |
latent_model_input = latents.to(device, transformer_dtype) | |
if self.config.expand_timesteps: | |
# seq_len: num_latent_frames * latent_height//2 * latent_width//2 | |
temp_ts = (mask[0][0][:, ::2, ::2] * t).flatten() | |
# batch_size, seq_len | |
timestep = temp_ts.unsqueeze(0).expand(latents.shape[0], -1) | |
else: | |
timestep = t.expand(latents.shape[0]) | |
noise_pred = current_model( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=prompt_embeds, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
)[0] | |
if self.do_classifier_free_guidance: | |
noise_uncond = current_model( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=negative_prompt_embeds, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
)[0] | |
noise_pred = noise_uncond + current_guidance_scale * \ | |
(noise_pred - noise_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, return_dict=False)[0] | |
# apply i2v mask | |
latents = (latent_model_input * (1 - mask)) + ( | |
latents * mask | |
) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end( | |
self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop( | |
"prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop( | |
"negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
self._current_timestep = None | |
if self._aggressive_offload: | |
# unload transformer | |
print("Unloading transformer") | |
self.transformer.to("cpu") | |
if self.transformer_2 is not None: | |
self.transformer_2.to("cpu") | |
# load vae | |
print("Loading Vae") | |
self.vae.to(vae_device) | |
flush() | |
if not output_type == "latent": | |
latents = latents.to(self.vae.dtype) | |
latents_mean = ( | |
torch.tensor(self.vae.config.latents_mean) | |
.view(1, self.vae.config.z_dim, 1, 1, 1) | |
.to(latents.device, latents.dtype) | |
) | |
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to( | |
latents.device, latents.dtype | |
) | |
latents = latents / latents_std + latents_mean | |
video = self.vae.decode(latents, return_dict=False)[0] | |
video = self.video_processor.postprocess_video( | |
video, output_type=output_type) | |
else: | |
video = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
# move transformer back to device | |
if self._aggressive_offload: | |
# print("Moving transformer back to device") | |
# self.transformer.to(self._execution_device) | |
flush() | |
if not return_dict: | |
return (video,) | |
return WanPipelineOutput(frames=video) | |