Spaces:
Paused
Paused
File size: 10,121 Bytes
3cc1e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
from functools import partial
import torch
from toolkit.prompt_utils import PromptEmbeds
from PIL import Image
from diffusers import UniPCMultistepScheduler
import torch
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from toolkit.samplers.custom_flowmatch_sampler import (
CustomFlowMatchEulerDiscreteScheduler,
)
from .wan22_pipeline import Wan22Pipeline
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from torchvision.transforms import functional as TF
from toolkit.models.wan21.wan21 import Wan21, AggressiveWanUnloadPipeline
from toolkit.models.wan21.wan_utils import add_first_frame_conditioning_v22
# for generation only?
scheduler_configUniPC = {
"_class_name": "UniPCMultistepScheduler",
"_diffusers_version": "0.35.0.dev0",
"beta_end": 0.02,
"beta_schedule": "linear",
"beta_start": 0.0001,
"disable_corrector": [],
"dynamic_thresholding_ratio": 0.995,
"final_sigmas_type": "zero",
"flow_shift": 5.0,
"lower_order_final": True,
"num_train_timesteps": 1000,
"predict_x0": True,
"prediction_type": "flow_prediction",
"rescale_betas_zero_snr": False,
"sample_max_value": 1.0,
"solver_order": 2,
"solver_p": None,
"solver_type": "bh2",
"steps_offset": 0,
"thresholding": False,
"time_shift_type": "exponential",
"timestep_spacing": "linspace",
"trained_betas": None,
"use_beta_sigmas": False,
"use_dynamic_shifting": False,
"use_exponential_sigmas": False,
"use_flow_sigmas": True,
"use_karras_sigmas": False,
}
# for training. I think it is right
scheduler_config = {
"num_train_timesteps": 1000,
"shift": 5.0,
"use_dynamic_shifting": False,
}
# TODO: this is a temporary monkeypatch to fix the time text embedding to allow for batch sizes greater than 1. Remove this when the diffusers library is fixed.
def time_text_monkeypatch(
self,
timestep: torch.Tensor,
encoder_hidden_states,
encoder_hidden_states_image = None,
timestep_seq_len = None,
):
timestep = self.timesteps_proj(timestep)
if timestep_seq_len is not None:
timestep = timestep.unflatten(0, (encoder_hidden_states.shape[0], timestep_seq_len))
time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype
if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8:
timestep = timestep.to(time_embedder_dtype)
temb = self.time_embedder(timestep).type_as(encoder_hidden_states)
timestep_proj = self.time_proj(self.act_fn(temb))
encoder_hidden_states = self.text_embedder(encoder_hidden_states)
if encoder_hidden_states_image is not None:
encoder_hidden_states_image = self.image_embedder(encoder_hidden_states_image)
return temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image
class Wan225bModel(Wan21):
arch = "wan22_5b"
_wan_generation_scheduler_config = scheduler_configUniPC
_wan_expand_timesteps = True
def __init__(
self,
device,
model_config: ModelConfig,
dtype="bf16",
custom_pipeline=None,
noise_scheduler=None,
**kwargs,
):
super().__init__(
device=device,
model_config=model_config,
dtype=dtype,
custom_pipeline=custom_pipeline,
noise_scheduler=noise_scheduler,
**kwargs,
)
self._wan_cache = None
def load_model(self):
super().load_model()
# patch the condition embedder
self.model.condition_embedder.forward = partial(time_text_monkeypatch, self.model.condition_embedder)
def get_bucket_divisibility(self):
# 16x compression and 2x2 patch size
return 32
def get_generation_pipeline(self):
scheduler = UniPCMultistepScheduler(**self._wan_generation_scheduler_config)
pipeline = Wan22Pipeline(
vae=self.vae,
transformer=self.model,
transformer_2=self.model,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
scheduler=scheduler,
expand_timesteps=self._wan_expand_timesteps,
device=self.device_torch,
aggressive_offload=self.model_config.low_vram,
)
pipeline = pipeline.to(self.device_torch)
return pipeline
# static method to get the scheduler
@staticmethod
def get_train_scheduler():
scheduler = CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
return scheduler
def get_base_model_version(self):
return "wan_2.2_5b"
def generate_single_image(
self,
pipeline: AggressiveWanUnloadPipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
# reactivate progress bar since this is slooooow
pipeline.set_progress_bar_config(disable=False)
num_frames = (
(gen_config.num_frames - 1) // 4
) * 4 + 1 # make sure it is divisible by 4 + 1
gen_config.num_frames = num_frames
height = gen_config.height
width = gen_config.width
noise_mask = None
if gen_config.ctrl_img is not None:
control_img = Image.open(gen_config.ctrl_img).convert("RGB")
d = self.get_bucket_divisibility()
# make sure they are divisible by d
height = height // d * d
width = width // d * d
# resize the control image
control_img = control_img.resize((width, height), Image.LANCZOS)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
latents = pipeline.prepare_latents(
1,
num_channels_latents,
height,
width,
gen_config.num_frames,
torch.float32,
self.device_torch,
generator,
None,
).to(self.torch_dtype)
first_frame_n1p1 = (
TF.to_tensor(control_img)
.unsqueeze(0)
.to(self.device_torch, dtype=self.torch_dtype)
* 2.0
- 1.0
) # normalize to [-1, 1]
gen_config.latents, noise_mask = add_first_frame_conditioning_v22(
latent_model_input=latents, first_frame=first_frame_n1p1, vae=self.vae
)
output = pipeline(
prompt_embeds=conditional_embeds.text_embeds.to(
self.device_torch, dtype=self.torch_dtype
),
negative_prompt_embeds=unconditional_embeds.text_embeds.to(
self.device_torch, dtype=self.torch_dtype
),
height=height,
width=width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
num_frames=gen_config.num_frames,
generator=generator,
return_dict=False,
output_type="pil",
noise_mask=noise_mask,
**extra,
)[0]
# shape = [1, frames, channels, height, width]
batch_item = output[0] # list of pil images
if gen_config.num_frames > 1:
return batch_item # return the frames.
else:
# get just the first image
img = batch_item[0]
return img
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
batch: DataLoaderBatchDTO,
**kwargs,
):
# videos come in (bs, num_frames, channels, height, width)
# images come in (bs, channels, height, width)
# for wan, only do i2v for video for now. Images do normal t2i
conditioned_latent = latent_model_input
noise_mask = None
if batch.dataset_config.do_i2v:
with torch.no_grad():
frames = batch.tensor
if len(frames.shape) == 4:
first_frames = frames
elif len(frames.shape) == 5:
first_frames = frames[:, 0]
# Add conditioning using the standalone function
conditioned_latent, noise_mask = add_first_frame_conditioning_v22(
latent_model_input=latent_model_input.to(
self.device_torch, self.torch_dtype
),
first_frame=first_frames.to(self.device_torch, self.torch_dtype),
vae=self.vae,
)
else:
raise ValueError(f"Unknown frame shape {frames.shape}")
# make the noise mask
if noise_mask is None:
noise_mask = torch.ones(
conditioned_latent.shape,
dtype=conditioned_latent.dtype,
device=conditioned_latent.device,
)
# todo write this better
t_chunks = torch.chunk(timestep, timestep.shape[0])
out_t_chunks = []
for t in t_chunks:
# seq_len: num_latent_frames * latent_height//2 * latent_width//2
temp_ts = (noise_mask[0][0][:, ::2, ::2] * t).flatten()
# batch_size, seq_len
temp_ts = temp_ts.unsqueeze(0)
out_t_chunks.append(temp_ts)
timestep = torch.cat(out_t_chunks, dim=0)
noise_pred = self.model(
hidden_states=conditioned_latent,
timestep=timestep,
encoder_hidden_states=text_embeddings.text_embeds,
return_dict=False,
**kwargs,
)[0]
return noise_pred
|