File size: 20,298 Bytes
3cc1e25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
from functools import partial
import os
from typing import Any, Dict, Optional, Union, List
from typing_extensions import Self
import torch
import yaml
from toolkit.accelerator import unwrap_model
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from PIL import Image
from diffusers import UniPCMultistepScheduler
import torch
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from toolkit.samplers.custom_flowmatch_sampler import (
    CustomFlowMatchEulerDiscreteScheduler,
)
from toolkit.util.quantize import quantize_model
from .wan22_pipeline import Wan22Pipeline
from diffusers import WanTransformer3DModel

from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from torchvision.transforms import functional as TF

from toolkit.models.wan21.wan21 import AggressiveWanUnloadPipeline, Wan21
from .wan22_5b_model import (
    scheduler_config,
    time_text_monkeypatch,
    Wan225bModel,
)
from safetensors.torch import load_file, save_file


boundary_ratio_t2v = 0.875
boundary_ratio_i2v = 0.9

scheduler_configUniPC = {
    "_class_name": "UniPCMultistepScheduler",
    "_diffusers_version": "0.35.0.dev0",
    "beta_end": 0.02,
    "beta_schedule": "linear",
    "beta_start": 0.0001,
    "disable_corrector": [],
    "dynamic_thresholding_ratio": 0.995,
    "final_sigmas_type": "zero",
    "flow_shift": 3.0,
    "lower_order_final": True,
    "num_train_timesteps": 1000,
    "predict_x0": True,
    "prediction_type": "flow_prediction",
    "rescale_betas_zero_snr": False,
    "sample_max_value": 1.0,
    "solver_order": 2,
    "solver_p": None,
    "solver_type": "bh2",
    "steps_offset": 0,
    "thresholding": False,
    "time_shift_type": "exponential",
    "timestep_spacing": "linspace",
    "trained_betas": None,
    "use_beta_sigmas": False,
    "use_dynamic_shifting": False,
    "use_exponential_sigmas": False,
    "use_flow_sigmas": True,
    "use_karras_sigmas": False,
}


class DualWanTransformer3DModel(torch.nn.Module):
    def __init__(
        self,
        transformer_1: WanTransformer3DModel,
        transformer_2: WanTransformer3DModel,
        torch_dtype: Optional[Union[str, torch.dtype]] = None,
        device: Optional[Union[str, torch.device]] = None,
        boundary_ratio: float = boundary_ratio_t2v,
        low_vram: bool = False,
    ) -> None:
        super().__init__()
        self.transformer_1: WanTransformer3DModel = transformer_1
        self.transformer_2: WanTransformer3DModel = transformer_2
        self.torch_dtype: torch.dtype = torch_dtype
        self.device_torch: torch.device = device
        self.boundary_ratio: float = boundary_ratio
        self.boundary: float = self.boundary_ratio * 1000
        self.low_vram: bool = low_vram
        self._active_transformer_name = "transformer_1"  # default to transformer_1

    @property
    def device(self) -> torch.device:
        return self.device_torch

    @property
    def dtype(self) -> torch.dtype:
        return self.torch_dtype

    @property
    def config(self):
        return self.transformer_1.config

    @property
    def transformer(self) -> WanTransformer3DModel:
        return getattr(self, self._active_transformer_name)

    def enable_gradient_checkpointing(self):
        """
        Enable gradient checkpointing for both transformers.
        """
        self.transformer_1.enable_gradient_checkpointing()
        self.transformer_2.enable_gradient_checkpointing()

    def forward(
        self,
        hidden_states: torch.Tensor,
        timestep: torch.LongTensor,
        encoder_hidden_states: torch.Tensor,
        encoder_hidden_states_image: Optional[torch.Tensor] = None,
        return_dict: bool = True,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        **kwargs
    ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
        # determine if doing high noise or low noise by meaning the timestep.
        # timesteps are in the range of 0 to 1000, so we can use a threshold
        with torch.no_grad():
            if timestep.float().mean().item() > self.boundary:
                t_name = "transformer_1"
            else:
                t_name = "transformer_2"

            # check if we are changing the active transformer, if so, we need to swap the one in
            # vram if low_vram is enabled
            # todo swap the loras as well
            if t_name != self._active_transformer_name:
                if self.low_vram:
                    getattr(self, self._active_transformer_name).to("cpu")
                    getattr(self, t_name).to(self.device_torch)
                    torch.cuda.empty_cache()
                self._active_transformer_name = t_name

        if self.transformer.device != hidden_states.device:
            if self.low_vram:
                # move other transformer to cpu
                other_tname = (
                    "transformer_1" if t_name == "transformer_2" else "transformer_2"
                )
                getattr(self, other_tname).to("cpu")

            self.transformer.to(hidden_states.device)

        return self.transformer(
            hidden_states=hidden_states,
            timestep=timestep,
            encoder_hidden_states=encoder_hidden_states,
            encoder_hidden_states_image=encoder_hidden_states_image,
            return_dict=return_dict,
            attention_kwargs=attention_kwargs,
        )

    def to(self, *args, **kwargs) -> Self:
        # do not do to, this will be handled separately
        return self


class Wan2214bModel(Wan21):
    arch = "wan22_14b"
    _wan_generation_scheduler_config = scheduler_configUniPC
    _wan_expand_timesteps = False
    _wan_vae_path = "ai-toolkit/wan2.1-vae"

    def __init__(
        self,
        device,
        model_config: ModelConfig,
        dtype="bf16",
        custom_pipeline=None,
        noise_scheduler=None,
        **kwargs,
    ):
        super().__init__(
            device=device,
            model_config=model_config,
            dtype=dtype,
            custom_pipeline=custom_pipeline,
            noise_scheduler=noise_scheduler,
            **kwargs,
        )
        # target it so we can target both transformers
        self.target_lora_modules = ["DualWanTransformer3DModel"]
        self._wan_cache = None

        self.is_multistage = True
        # multistage boundaries split the models up when sampling timesteps
        # for wan 2.2 14b. the timesteps are 1000-875 for transformer 1 and 875-0 for transformer 2
        self.multistage_boundaries: List[float] = [0.875, 0.0]

        self.train_high_noise = model_config.model_kwargs.get("train_high_noise", True)
        self.train_low_noise = model_config.model_kwargs.get("train_low_noise", True)

        self.trainable_multistage_boundaries: List[int] = []
        if self.train_high_noise:
            self.trainable_multistage_boundaries.append(0)
        if self.train_low_noise:
            self.trainable_multistage_boundaries.append(1)

        if len(self.trainable_multistage_boundaries) == 0:
            raise ValueError(
                "At least one of train_high_noise or train_low_noise must be True in model.model_kwargs"
            )
        
        # if we are only training one or the other, the target LoRA modules will be the wan transformer class
        if not self.train_high_noise or not self.train_low_noise:
            self.target_lora_modules = ["WanTransformer3DModel"]

    @property
    def max_step_saves_to_keep_multiplier(self):
        # the cleanup mechanism checks this to see how many saves to keep
        # if we are training a LoRA, we need to set this to 2 so we keep both the high noise and low noise LoRAs at saves to keep
        if (
            self.network is not None
            and self.network.network_config.split_multistage_loras
        ):
            return 2
        return 1

    def load_model(self):
        # load model from patent parent. Wan21 not immediate parent
        # super().load_model()
        super().load_model()

        # we have to split up the model on the pipeline
        self.pipeline.transformer = self.model.transformer_1
        self.pipeline.transformer_2 = self.model.transformer_2

        # patch the condition embedder
        self.model.transformer_1.condition_embedder.forward = partial(
            time_text_monkeypatch, self.model.transformer_1.condition_embedder
        )
        self.model.transformer_2.condition_embedder.forward = partial(
            time_text_monkeypatch, self.model.transformer_2.condition_embedder
        )

    def get_bucket_divisibility(self):
        # 16x compression  and 2x2 patch size
        return 32

    def load_wan_transformer(self, transformer_path, subfolder=None):
        if self.model_config.split_model_over_gpus:
            raise ValueError(
                "Splitting model over gpus is not supported for Wan2.2 models"
            )

        if (
            self.model_config.assistant_lora_path is not None
            or self.model_config.inference_lora_path is not None
        ):
            raise ValueError(
                "Assistant LoRA is not supported for Wan2.2 models currently"
            )

        if self.model_config.lora_path is not None:
            raise ValueError(
                "Loading LoRA is not supported for Wan2.2 models currently"
            )

        # transformer path can be a directory that ends with /transformer or a hf path.

        transformer_path_1 = transformer_path
        subfolder_1 = subfolder

        transformer_path_2 = transformer_path
        subfolder_2 = subfolder

        if subfolder_2 is None:
            # we have a local path, replace it with transformer_2 folder
            transformer_path_2 = os.path.join(
                os.path.dirname(transformer_path_1), "transformer_2"
            )
        else:
            # we have a hf path, replace it with transformer_2 subfolder
            subfolder_2 = "transformer_2"

        self.print_and_status_update("Loading transformer 1")
        dtype = self.torch_dtype
        transformer_1 = WanTransformer3DModel.from_pretrained(
            transformer_path_1,
            subfolder=subfolder_1,
            torch_dtype=dtype,
        ).to(dtype=dtype)

        flush()

        if not self.model_config.low_vram:
            # quantize on the device
            transformer_1.to(self.quantize_device, dtype=dtype)
            flush()

        if self.model_config.quantize and self.model_config.accuracy_recovery_adapter is None:
            # todo handle two ARAs
            self.print_and_status_update("Quantizing Transformer 1")
            quantize_model(self, transformer_1)
            flush()

        if self.model_config.low_vram:
            self.print_and_status_update("Moving transformer 1 to CPU")
            transformer_1.to("cpu")

        self.print_and_status_update("Loading transformer 2")
        dtype = self.torch_dtype
        transformer_2 = WanTransformer3DModel.from_pretrained(
            transformer_path_2,
            subfolder=subfolder_2,
            torch_dtype=dtype,
        ).to(dtype=dtype)

        flush()

        if not self.model_config.low_vram:
            # quantize on the device
            transformer_2.to(self.quantize_device, dtype=dtype)
            flush()

        if self.model_config.quantize and self.model_config.accuracy_recovery_adapter is None:
            # todo handle two ARAs
            self.print_and_status_update("Quantizing Transformer 2")
            quantize_model(self, transformer_2)
            flush()

        if self.model_config.low_vram:
            self.print_and_status_update("Moving transformer 2 to CPU")
            transformer_2.to("cpu")

        # make the combined model
        self.print_and_status_update("Creating DualWanTransformer3DModel")
        transformer = DualWanTransformer3DModel(
            transformer_1=transformer_1,
            transformer_2=transformer_2,
            torch_dtype=self.torch_dtype,
            device=self.device_torch,
            boundary_ratio=boundary_ratio_t2v,
            low_vram=self.model_config.low_vram,
        )
        
        if self.model_config.quantize and self.model_config.accuracy_recovery_adapter is not None:
            # apply the accuracy recovery adapter to both transformers
            self.print_and_status_update("Applying Accuracy Recovery Adapter to Transformers")
            quantize_model(self, transformer)
            flush()
            
        return transformer

    def get_generation_pipeline(self):
        scheduler = UniPCMultistepScheduler(**self._wan_generation_scheduler_config)
        pipeline = Wan22Pipeline(
            vae=self.vae,
            transformer=self.model.transformer_1,
            transformer_2=self.model.transformer_2,
            text_encoder=self.text_encoder,
            tokenizer=self.tokenizer,
            scheduler=scheduler,
            expand_timesteps=self._wan_expand_timesteps,
            device=self.device_torch,
            aggressive_offload=self.model_config.low_vram,
            # todo detect if it is i2v or t2v
            boundary_ratio=boundary_ratio_t2v,
        )

        # pipeline = pipeline.to(self.device_torch)

        return pipeline

    # static method to get the scheduler
    @staticmethod
    def get_train_scheduler():
        scheduler = CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
        return scheduler

    def get_base_model_version(self):
        return "wan_2.2_14b"

    def generate_single_image(
        self,
        pipeline: AggressiveWanUnloadPipeline,
        gen_config: GenerateImageConfig,
        conditional_embeds: PromptEmbeds,
        unconditional_embeds: PromptEmbeds,
        generator: torch.Generator,
        extra: dict,
    ):
        return super().generate_single_image(
            pipeline=pipeline,
            gen_config=gen_config,
            conditional_embeds=conditional_embeds,
            unconditional_embeds=unconditional_embeds,
            generator=generator,
            extra=extra,
        )

    def get_noise_prediction(
        self,
        latent_model_input: torch.Tensor,
        timestep: torch.Tensor,  # 0 to 1000 scale
        text_embeddings: PromptEmbeds,
        batch: DataLoaderBatchDTO,
        **kwargs,
    ):
        # todo do we need to override this? Adjust timesteps?
        return super().get_noise_prediction(
            latent_model_input=latent_model_input,
            timestep=timestep,
            text_embeddings=text_embeddings,
            batch=batch,
            **kwargs,
        )

    def get_model_has_grad(self):
        return False

    def get_te_has_grad(self):
        return False

    def save_model(self, output_path, meta, save_dtype):
        transformer_combo: DualWanTransformer3DModel = unwrap_model(self.model)
        transformer_combo.transformer_1.save_pretrained(
            save_directory=os.path.join(output_path, "transformer"),
            safe_serialization=True,
        )
        transformer_combo.transformer_2.save_pretrained(
            save_directory=os.path.join(output_path, "transformer_2"),
            safe_serialization=True,
        )

        meta_path = os.path.join(output_path, "aitk_meta.yaml")
        with open(meta_path, "w") as f:
            yaml.dump(meta, f)

    def save_lora(
        self,
        state_dict: Dict[str, torch.Tensor],
        output_path: str,
        metadata: Optional[Dict[str, Any]] = None,
    ):
        if not self.network.network_config.split_multistage_loras:
            # just save as a combo lora
            save_file(state_dict, output_path, metadata=metadata)
            return

        # we need to build out both dictionaries for high and low noise LoRAs
        high_noise_lora = {}
        low_noise_lora = {}
        
        only_train_high_noise = self.train_high_noise and not self.train_low_noise
        only_train_low_noise = self.train_low_noise and not self.train_high_noise

        for key in state_dict:
            if ".transformer_1." in key or only_train_high_noise:
                # this is a high noise LoRA
                new_key = key.replace(".transformer_1.", ".")
                high_noise_lora[new_key] = state_dict[key]
            elif ".transformer_2." in key or only_train_low_noise:
                # this is a low noise LoRA
                new_key = key.replace(".transformer_2.", ".")
                low_noise_lora[new_key] = state_dict[key]

        # loras have either LORA_MODEL_NAME_000005000.safetensors or LORA_MODEL_NAME.safetensors
        if len(high_noise_lora.keys()) > 0:
            # save the high noise LoRA
            high_noise_lora_path = output_path.replace(
                ".safetensors", "_high_noise.safetensors"
            )
            save_file(high_noise_lora, high_noise_lora_path, metadata=metadata)

        if len(low_noise_lora.keys()) > 0:
            # save the low noise LoRA
            low_noise_lora_path = output_path.replace(
                ".safetensors", "_low_noise.safetensors"
            )
            save_file(low_noise_lora, low_noise_lora_path, metadata=metadata)

    def load_lora(self, file: str):
        # if it doesnt have high_noise or low_noise, it is a combo LoRA
        if (
            "_high_noise.safetensors" not in file
            and "_low_noise.safetensors" not in file
        ):
            # this is a combined LoRA, we dont need to split it up
            sd = load_file(file)
            return sd

        # we may have been passed the high_noise or the low_noise LoRA path, but we need to load both
        high_noise_lora_path = file.replace(
            "_low_noise.safetensors", "_high_noise.safetensors"
        )
        low_noise_lora_path = file.replace(
            "_high_noise.safetensors", "_low_noise.safetensors"
        )

        combined_dict = {}

        if os.path.exists(high_noise_lora_path) and self.train_high_noise:
            # load the high noise LoRA
            high_noise_lora = load_file(high_noise_lora_path)
            for key in high_noise_lora:
                new_key = key.replace(
                    "diffusion_model.", "diffusion_model.transformer_1."
                )
                combined_dict[new_key] = high_noise_lora[key]
        if os.path.exists(low_noise_lora_path) and self.train_low_noise:
            # load the low noise LoRA
            low_noise_lora = load_file(low_noise_lora_path)
            for key in low_noise_lora:
                new_key = key.replace(
                    "diffusion_model.", "diffusion_model.transformer_2."
                )
                combined_dict[new_key] = low_noise_lora[key]
        
        # if we are not training both stages, we wont have transformer designations in the keys
        if not self.train_high_noise and not self.train_low_noise:
            new_dict = {}
            for key in combined_dict:
                if ".transformer_1." in key:
                    new_key = key.replace(".transformer_1.", ".")
                elif ".transformer_2." in key:
                    new_key = key.replace(".transformer_2.", ".")
                else:
                    new_key = key
                new_dict[new_key] = combined_dict[key]
            combined_dict = new_dict

        return combined_dict

    def get_model_to_train(self):
        # todo, loras wont load right unless they have the transformer_1 or transformer_2 in the key.
        # called when setting up the LoRA. We only need to get the model for the stages we want to train.
        if self.train_high_noise and self.train_low_noise:
            # we are training both stages, return the unified model
            return self.model
        elif self.train_high_noise:
            # we are only training the high noise stage, return transformer_1
            return self.model.transformer_1
        elif self.train_low_noise:
            # we are only training the low noise stage, return transformer_2
            return self.model.transformer_2
        else:
            raise ValueError(
                "At least one of train_high_noise or train_low_noise must be True in model.model_kwargs"
            )