Spaces:
Paused
Paused
File size: 20,298 Bytes
3cc1e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
from functools import partial
import os
from typing import Any, Dict, Optional, Union, List
from typing_extensions import Self
import torch
import yaml
from toolkit.accelerator import unwrap_model
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from PIL import Image
from diffusers import UniPCMultistepScheduler
import torch
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from toolkit.samplers.custom_flowmatch_sampler import (
CustomFlowMatchEulerDiscreteScheduler,
)
from toolkit.util.quantize import quantize_model
from .wan22_pipeline import Wan22Pipeline
from diffusers import WanTransformer3DModel
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from torchvision.transforms import functional as TF
from toolkit.models.wan21.wan21 import AggressiveWanUnloadPipeline, Wan21
from .wan22_5b_model import (
scheduler_config,
time_text_monkeypatch,
Wan225bModel,
)
from safetensors.torch import load_file, save_file
boundary_ratio_t2v = 0.875
boundary_ratio_i2v = 0.9
scheduler_configUniPC = {
"_class_name": "UniPCMultistepScheduler",
"_diffusers_version": "0.35.0.dev0",
"beta_end": 0.02,
"beta_schedule": "linear",
"beta_start": 0.0001,
"disable_corrector": [],
"dynamic_thresholding_ratio": 0.995,
"final_sigmas_type": "zero",
"flow_shift": 3.0,
"lower_order_final": True,
"num_train_timesteps": 1000,
"predict_x0": True,
"prediction_type": "flow_prediction",
"rescale_betas_zero_snr": False,
"sample_max_value": 1.0,
"solver_order": 2,
"solver_p": None,
"solver_type": "bh2",
"steps_offset": 0,
"thresholding": False,
"time_shift_type": "exponential",
"timestep_spacing": "linspace",
"trained_betas": None,
"use_beta_sigmas": False,
"use_dynamic_shifting": False,
"use_exponential_sigmas": False,
"use_flow_sigmas": True,
"use_karras_sigmas": False,
}
class DualWanTransformer3DModel(torch.nn.Module):
def __init__(
self,
transformer_1: WanTransformer3DModel,
transformer_2: WanTransformer3DModel,
torch_dtype: Optional[Union[str, torch.dtype]] = None,
device: Optional[Union[str, torch.device]] = None,
boundary_ratio: float = boundary_ratio_t2v,
low_vram: bool = False,
) -> None:
super().__init__()
self.transformer_1: WanTransformer3DModel = transformer_1
self.transformer_2: WanTransformer3DModel = transformer_2
self.torch_dtype: torch.dtype = torch_dtype
self.device_torch: torch.device = device
self.boundary_ratio: float = boundary_ratio
self.boundary: float = self.boundary_ratio * 1000
self.low_vram: bool = low_vram
self._active_transformer_name = "transformer_1" # default to transformer_1
@property
def device(self) -> torch.device:
return self.device_torch
@property
def dtype(self) -> torch.dtype:
return self.torch_dtype
@property
def config(self):
return self.transformer_1.config
@property
def transformer(self) -> WanTransformer3DModel:
return getattr(self, self._active_transformer_name)
def enable_gradient_checkpointing(self):
"""
Enable gradient checkpointing for both transformers.
"""
self.transformer_1.enable_gradient_checkpointing()
self.transformer_2.enable_gradient_checkpointing()
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_image: Optional[torch.Tensor] = None,
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
**kwargs
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
# determine if doing high noise or low noise by meaning the timestep.
# timesteps are in the range of 0 to 1000, so we can use a threshold
with torch.no_grad():
if timestep.float().mean().item() > self.boundary:
t_name = "transformer_1"
else:
t_name = "transformer_2"
# check if we are changing the active transformer, if so, we need to swap the one in
# vram if low_vram is enabled
# todo swap the loras as well
if t_name != self._active_transformer_name:
if self.low_vram:
getattr(self, self._active_transformer_name).to("cpu")
getattr(self, t_name).to(self.device_torch)
torch.cuda.empty_cache()
self._active_transformer_name = t_name
if self.transformer.device != hidden_states.device:
if self.low_vram:
# move other transformer to cpu
other_tname = (
"transformer_1" if t_name == "transformer_2" else "transformer_2"
)
getattr(self, other_tname).to("cpu")
self.transformer.to(hidden_states.device)
return self.transformer(
hidden_states=hidden_states,
timestep=timestep,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_image=encoder_hidden_states_image,
return_dict=return_dict,
attention_kwargs=attention_kwargs,
)
def to(self, *args, **kwargs) -> Self:
# do not do to, this will be handled separately
return self
class Wan2214bModel(Wan21):
arch = "wan22_14b"
_wan_generation_scheduler_config = scheduler_configUniPC
_wan_expand_timesteps = False
_wan_vae_path = "ai-toolkit/wan2.1-vae"
def __init__(
self,
device,
model_config: ModelConfig,
dtype="bf16",
custom_pipeline=None,
noise_scheduler=None,
**kwargs,
):
super().__init__(
device=device,
model_config=model_config,
dtype=dtype,
custom_pipeline=custom_pipeline,
noise_scheduler=noise_scheduler,
**kwargs,
)
# target it so we can target both transformers
self.target_lora_modules = ["DualWanTransformer3DModel"]
self._wan_cache = None
self.is_multistage = True
# multistage boundaries split the models up when sampling timesteps
# for wan 2.2 14b. the timesteps are 1000-875 for transformer 1 and 875-0 for transformer 2
self.multistage_boundaries: List[float] = [0.875, 0.0]
self.train_high_noise = model_config.model_kwargs.get("train_high_noise", True)
self.train_low_noise = model_config.model_kwargs.get("train_low_noise", True)
self.trainable_multistage_boundaries: List[int] = []
if self.train_high_noise:
self.trainable_multistage_boundaries.append(0)
if self.train_low_noise:
self.trainable_multistage_boundaries.append(1)
if len(self.trainable_multistage_boundaries) == 0:
raise ValueError(
"At least one of train_high_noise or train_low_noise must be True in model.model_kwargs"
)
# if we are only training one or the other, the target LoRA modules will be the wan transformer class
if not self.train_high_noise or not self.train_low_noise:
self.target_lora_modules = ["WanTransformer3DModel"]
@property
def max_step_saves_to_keep_multiplier(self):
# the cleanup mechanism checks this to see how many saves to keep
# if we are training a LoRA, we need to set this to 2 so we keep both the high noise and low noise LoRAs at saves to keep
if (
self.network is not None
and self.network.network_config.split_multistage_loras
):
return 2
return 1
def load_model(self):
# load model from patent parent. Wan21 not immediate parent
# super().load_model()
super().load_model()
# we have to split up the model on the pipeline
self.pipeline.transformer = self.model.transformer_1
self.pipeline.transformer_2 = self.model.transformer_2
# patch the condition embedder
self.model.transformer_1.condition_embedder.forward = partial(
time_text_monkeypatch, self.model.transformer_1.condition_embedder
)
self.model.transformer_2.condition_embedder.forward = partial(
time_text_monkeypatch, self.model.transformer_2.condition_embedder
)
def get_bucket_divisibility(self):
# 16x compression and 2x2 patch size
return 32
def load_wan_transformer(self, transformer_path, subfolder=None):
if self.model_config.split_model_over_gpus:
raise ValueError(
"Splitting model over gpus is not supported for Wan2.2 models"
)
if (
self.model_config.assistant_lora_path is not None
or self.model_config.inference_lora_path is not None
):
raise ValueError(
"Assistant LoRA is not supported for Wan2.2 models currently"
)
if self.model_config.lora_path is not None:
raise ValueError(
"Loading LoRA is not supported for Wan2.2 models currently"
)
# transformer path can be a directory that ends with /transformer or a hf path.
transformer_path_1 = transformer_path
subfolder_1 = subfolder
transformer_path_2 = transformer_path
subfolder_2 = subfolder
if subfolder_2 is None:
# we have a local path, replace it with transformer_2 folder
transformer_path_2 = os.path.join(
os.path.dirname(transformer_path_1), "transformer_2"
)
else:
# we have a hf path, replace it with transformer_2 subfolder
subfolder_2 = "transformer_2"
self.print_and_status_update("Loading transformer 1")
dtype = self.torch_dtype
transformer_1 = WanTransformer3DModel.from_pretrained(
transformer_path_1,
subfolder=subfolder_1,
torch_dtype=dtype,
).to(dtype=dtype)
flush()
if not self.model_config.low_vram:
# quantize on the device
transformer_1.to(self.quantize_device, dtype=dtype)
flush()
if self.model_config.quantize and self.model_config.accuracy_recovery_adapter is None:
# todo handle two ARAs
self.print_and_status_update("Quantizing Transformer 1")
quantize_model(self, transformer_1)
flush()
if self.model_config.low_vram:
self.print_and_status_update("Moving transformer 1 to CPU")
transformer_1.to("cpu")
self.print_and_status_update("Loading transformer 2")
dtype = self.torch_dtype
transformer_2 = WanTransformer3DModel.from_pretrained(
transformer_path_2,
subfolder=subfolder_2,
torch_dtype=dtype,
).to(dtype=dtype)
flush()
if not self.model_config.low_vram:
# quantize on the device
transformer_2.to(self.quantize_device, dtype=dtype)
flush()
if self.model_config.quantize and self.model_config.accuracy_recovery_adapter is None:
# todo handle two ARAs
self.print_and_status_update("Quantizing Transformer 2")
quantize_model(self, transformer_2)
flush()
if self.model_config.low_vram:
self.print_and_status_update("Moving transformer 2 to CPU")
transformer_2.to("cpu")
# make the combined model
self.print_and_status_update("Creating DualWanTransformer3DModel")
transformer = DualWanTransformer3DModel(
transformer_1=transformer_1,
transformer_2=transformer_2,
torch_dtype=self.torch_dtype,
device=self.device_torch,
boundary_ratio=boundary_ratio_t2v,
low_vram=self.model_config.low_vram,
)
if self.model_config.quantize and self.model_config.accuracy_recovery_adapter is not None:
# apply the accuracy recovery adapter to both transformers
self.print_and_status_update("Applying Accuracy Recovery Adapter to Transformers")
quantize_model(self, transformer)
flush()
return transformer
def get_generation_pipeline(self):
scheduler = UniPCMultistepScheduler(**self._wan_generation_scheduler_config)
pipeline = Wan22Pipeline(
vae=self.vae,
transformer=self.model.transformer_1,
transformer_2=self.model.transformer_2,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
scheduler=scheduler,
expand_timesteps=self._wan_expand_timesteps,
device=self.device_torch,
aggressive_offload=self.model_config.low_vram,
# todo detect if it is i2v or t2v
boundary_ratio=boundary_ratio_t2v,
)
# pipeline = pipeline.to(self.device_torch)
return pipeline
# static method to get the scheduler
@staticmethod
def get_train_scheduler():
scheduler = CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
return scheduler
def get_base_model_version(self):
return "wan_2.2_14b"
def generate_single_image(
self,
pipeline: AggressiveWanUnloadPipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
return super().generate_single_image(
pipeline=pipeline,
gen_config=gen_config,
conditional_embeds=conditional_embeds,
unconditional_embeds=unconditional_embeds,
generator=generator,
extra=extra,
)
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
batch: DataLoaderBatchDTO,
**kwargs,
):
# todo do we need to override this? Adjust timesteps?
return super().get_noise_prediction(
latent_model_input=latent_model_input,
timestep=timestep,
text_embeddings=text_embeddings,
batch=batch,
**kwargs,
)
def get_model_has_grad(self):
return False
def get_te_has_grad(self):
return False
def save_model(self, output_path, meta, save_dtype):
transformer_combo: DualWanTransformer3DModel = unwrap_model(self.model)
transformer_combo.transformer_1.save_pretrained(
save_directory=os.path.join(output_path, "transformer"),
safe_serialization=True,
)
transformer_combo.transformer_2.save_pretrained(
save_directory=os.path.join(output_path, "transformer_2"),
safe_serialization=True,
)
meta_path = os.path.join(output_path, "aitk_meta.yaml")
with open(meta_path, "w") as f:
yaml.dump(meta, f)
def save_lora(
self,
state_dict: Dict[str, torch.Tensor],
output_path: str,
metadata: Optional[Dict[str, Any]] = None,
):
if not self.network.network_config.split_multistage_loras:
# just save as a combo lora
save_file(state_dict, output_path, metadata=metadata)
return
# we need to build out both dictionaries for high and low noise LoRAs
high_noise_lora = {}
low_noise_lora = {}
only_train_high_noise = self.train_high_noise and not self.train_low_noise
only_train_low_noise = self.train_low_noise and not self.train_high_noise
for key in state_dict:
if ".transformer_1." in key or only_train_high_noise:
# this is a high noise LoRA
new_key = key.replace(".transformer_1.", ".")
high_noise_lora[new_key] = state_dict[key]
elif ".transformer_2." in key or only_train_low_noise:
# this is a low noise LoRA
new_key = key.replace(".transformer_2.", ".")
low_noise_lora[new_key] = state_dict[key]
# loras have either LORA_MODEL_NAME_000005000.safetensors or LORA_MODEL_NAME.safetensors
if len(high_noise_lora.keys()) > 0:
# save the high noise LoRA
high_noise_lora_path = output_path.replace(
".safetensors", "_high_noise.safetensors"
)
save_file(high_noise_lora, high_noise_lora_path, metadata=metadata)
if len(low_noise_lora.keys()) > 0:
# save the low noise LoRA
low_noise_lora_path = output_path.replace(
".safetensors", "_low_noise.safetensors"
)
save_file(low_noise_lora, low_noise_lora_path, metadata=metadata)
def load_lora(self, file: str):
# if it doesnt have high_noise or low_noise, it is a combo LoRA
if (
"_high_noise.safetensors" not in file
and "_low_noise.safetensors" not in file
):
# this is a combined LoRA, we dont need to split it up
sd = load_file(file)
return sd
# we may have been passed the high_noise or the low_noise LoRA path, but we need to load both
high_noise_lora_path = file.replace(
"_low_noise.safetensors", "_high_noise.safetensors"
)
low_noise_lora_path = file.replace(
"_high_noise.safetensors", "_low_noise.safetensors"
)
combined_dict = {}
if os.path.exists(high_noise_lora_path) and self.train_high_noise:
# load the high noise LoRA
high_noise_lora = load_file(high_noise_lora_path)
for key in high_noise_lora:
new_key = key.replace(
"diffusion_model.", "diffusion_model.transformer_1."
)
combined_dict[new_key] = high_noise_lora[key]
if os.path.exists(low_noise_lora_path) and self.train_low_noise:
# load the low noise LoRA
low_noise_lora = load_file(low_noise_lora_path)
for key in low_noise_lora:
new_key = key.replace(
"diffusion_model.", "diffusion_model.transformer_2."
)
combined_dict[new_key] = low_noise_lora[key]
# if we are not training both stages, we wont have transformer designations in the keys
if not self.train_high_noise and not self.train_low_noise:
new_dict = {}
for key in combined_dict:
if ".transformer_1." in key:
new_key = key.replace(".transformer_1.", ".")
elif ".transformer_2." in key:
new_key = key.replace(".transformer_2.", ".")
else:
new_key = key
new_dict[new_key] = combined_dict[key]
combined_dict = new_dict
return combined_dict
def get_model_to_train(self):
# todo, loras wont load right unless they have the transformer_1 or transformer_2 in the key.
# called when setting up the LoRA. We only need to get the model for the stages we want to train.
if self.train_high_noise and self.train_low_noise:
# we are training both stages, return the unified model
return self.model
elif self.train_high_noise:
# we are only training the high noise stage, return transformer_1
return self.model.transformer_1
elif self.train_low_noise:
# we are only training the low noise stage, return transformer_2
return self.model.transformer_2
else:
raise ValueError(
"At least one of train_high_noise or train_low_noise must be True in model.model_kwargs"
)
|