Spaces:
Paused
Paused
File size: 12,966 Bytes
3cc1e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import os
from typing import TYPE_CHECKING, List, Optional
import torch
import yaml
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from toolkit.models.base_model import BaseModel
from diffusers import AutoencoderKL
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from toolkit.samplers.custom_flowmatch_sampler import (
CustomFlowMatchEulerDiscreteScheduler,
)
from toolkit.accelerator import unwrap_model
from optimum.quanto import freeze
from toolkit.util.quantize import quantize, get_qtype
from .src.pipelines.omnigen2.pipeline_omnigen2 import OmniGen2Pipeline
from .src.models.transformers import OmniGen2Transformer2DModel
from .src.models.transformers.repo import OmniGen2RotaryPosEmbed
from .src.schedulers.scheduling_flow_match_euler_discrete import (
FlowMatchEulerDiscreteScheduler as OmniFlowMatchEuler,
)
from PIL import Image
from transformers import (
CLIPProcessor,
Qwen2_5_VLForConditionalGeneration,
)
import torch.nn.functional as F
if TYPE_CHECKING:
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
scheduler_config = {"num_train_timesteps": 1000}
BASE_MODEL_PATH = "OmniGen2/OmniGen2"
class OmniGen2Model(BaseModel):
arch = "omnigen2"
def __init__(
self,
device,
model_config: ModelConfig,
dtype="bf16",
custom_pipeline=None,
noise_scheduler=None,
**kwargs,
):
super().__init__(
device, model_config, dtype, custom_pipeline, noise_scheduler, **kwargs
)
self.is_flow_matching = True
self.is_transformer = True
self.target_lora_modules = ["OmniGen2Transformer2DModel"]
self._control_latent = None
# static method to get the noise scheduler
@staticmethod
def get_train_scheduler():
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
def get_bucket_divisibility(self):
return 16
def load_model(self):
dtype = self.torch_dtype
# HiDream-ai/HiDream-I1-Full
self.print_and_status_update("Loading OmniGen2 model")
# will be updated if we detect a existing checkpoint in training folder
model_path = self.model_config.name_or_path
extras_path = self.model_config.extras_name_or_path
scheduler = OmniGen2Model.get_train_scheduler()
self.print_and_status_update("Loading Qwen2.5 VL")
processor = CLIPProcessor.from_pretrained(
extras_path, subfolder="processor", use_fast=True
)
mllm = Qwen2_5_VLForConditionalGeneration.from_pretrained(
extras_path, subfolder="mllm", torch_dtype=torch.bfloat16
)
mllm.to(self.device_torch, dtype=dtype)
if self.model_config.quantize_te:
self.print_and_status_update("Quantizing Qwen2.5 VL model")
quantization_type = get_qtype(self.model_config.qtype_te)
quantize(mllm, weights=quantization_type)
freeze(mllm)
if self.low_vram:
# unload it for now
mllm.to("cpu")
flush()
self.print_and_status_update("Loading transformer")
transformer = OmniGen2Transformer2DModel.from_pretrained(
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
)
if not self.low_vram:
transformer.to(self.device_torch, dtype=dtype)
if self.model_config.quantize:
self.print_and_status_update("Quantizing transformer")
quantization_type = get_qtype(self.model_config.qtype)
quantize(transformer, weights=quantization_type)
freeze(transformer)
if self.low_vram:
# unload it for now
transformer.to("cpu")
flush()
self.print_and_status_update("Loading vae")
vae = AutoencoderKL.from_pretrained(
extras_path, subfolder="vae", torch_dtype=torch.bfloat16
).to(self.device_torch, dtype=dtype)
flush()
self.print_and_status_update("Loading Qwen2.5 VLProcessor")
flush()
if self.low_vram:
self.print_and_status_update("Moving everything to device")
# move it all back
transformer.to(self.device_torch, dtype=dtype)
vae.to(self.device_torch, dtype=dtype)
mllm.to(self.device_torch, dtype=dtype)
# set to eval mode
# transformer.eval()
vae.eval()
mllm.eval()
mllm.requires_grad_(False)
pipe: OmniGen2Pipeline = OmniGen2Pipeline(
transformer=transformer,
vae=vae,
scheduler=scheduler,
mllm=mllm,
processor=processor,
)
flush()
text_encoder_list = [mllm]
tokenizer_list = [processor]
flush()
# save it to the model class
self.vae = vae
self.text_encoder = text_encoder_list # list of text encoders
self.tokenizer = tokenizer_list # list of tokenizers
self.model = pipe.transformer
self.pipeline = pipe
self.freqs_cis = OmniGen2RotaryPosEmbed.get_freqs_cis(
transformer.config.axes_dim_rope,
transformer.config.axes_lens,
theta=10000,
)
self.print_and_status_update("Model Loaded")
def get_generation_pipeline(self):
scheduler = OmniFlowMatchEuler(
dynamic_time_shift=True, num_train_timesteps=1000
)
pipeline: OmniGen2Pipeline = OmniGen2Pipeline(
transformer=self.model,
vae=self.vae,
scheduler=scheduler,
mllm=self.text_encoder[0],
processor=self.tokenizer[0],
)
pipeline = pipeline.to(self.device_torch)
return pipeline
def generate_single_image(
self,
pipeline: OmniGen2Pipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
input_images = []
if gen_config.ctrl_img is not None:
control_img = Image.open(gen_config.ctrl_img)
control_img = control_img.convert("RGB")
# resize to width and height
if control_img.size != (gen_config.width, gen_config.height):
control_img = control_img.resize(
(gen_config.width, gen_config.height), Image.BILINEAR
)
input_images = [control_img]
img = pipeline(
prompt_embeds=conditional_embeds.text_embeds,
prompt_attention_mask=conditional_embeds.attention_mask,
negative_prompt_embeds=unconditional_embeds.text_embeds,
negative_prompt_attention_mask=unconditional_embeds.attention_mask,
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
text_guidance_scale=gen_config.guidance_scale,
image_guidance_scale=1.0, # reference image guidance scale. Add this for controls
latents=gen_config.latents,
align_res=False,
generator=generator,
input_images=input_images,
**extra,
).images[0]
return img
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
**kwargs,
):
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
try:
timestep = timestep.expand(latent_model_input.shape[0]).to(
latent_model_input.dtype
)
except Exception as e:
pass
timesteps = timestep / 1000 # convert to 0 to 1 scale
# timestep for model starts at 0 instead of 1. So we need to reverse them
timestep = 1 - timesteps
model_pred = self.model(
latent_model_input,
timestep,
text_embeddings.text_embeds,
self.freqs_cis,
text_embeddings.attention_mask,
ref_image_hidden_states=self._control_latent,
)
return model_pred
def condition_noisy_latents(
self, latents: torch.Tensor, batch: "DataLoaderBatchDTO"
):
# reset the control latent
self._control_latent = None
with torch.no_grad():
control_tensor = batch.control_tensor
if control_tensor is not None:
self.vae.to(self.device_torch)
# we are not packed here, so we just need to pass them so we can pack them later
control_tensor = control_tensor * 2 - 1
control_tensor = control_tensor.to(
self.vae_device_torch, dtype=self.torch_dtype
)
# if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
# todo, we may not need to do this, check
if batch.tensor is not None:
target_h, target_w = batch.tensor.shape[2], batch.tensor.shape[3]
else:
# When caching latents, batch.tensor is None. We get the size from the file_items instead.
target_h = batch.file_items[0].crop_height
target_w = batch.file_items[0].crop_width
if (
control_tensor.shape[2] != target_h
or control_tensor.shape[3] != target_w
):
control_tensor = F.interpolate(
control_tensor, size=(target_h, target_w), mode="bilinear"
)
control_latent = self.encode_images(control_tensor).to(
latents.device, latents.dtype
)
self._control_latent = [
[x.squeeze(0)]
for x in torch.chunk(control_latent, control_latent.shape[0], dim=0)
]
return latents.detach()
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt = [self.pipeline._apply_chat_template(_prompt) for _prompt in prompt]
self.text_encoder_to(self.device_torch, dtype=self.torch_dtype)
max_sequence_length = 256
prompt_embeds, prompt_attention_mask, _, _ = self.pipeline.encode_prompt(
prompt=prompt,
do_classifier_free_guidance=False,
device=self.device_torch,
max_sequence_length=max_sequence_length,
)
pe = PromptEmbeds(prompt_embeds)
pe.attention_mask = prompt_attention_mask
return pe
def get_model_has_grad(self):
# return from a weight if it has grad
return False
def get_te_has_grad(self):
# assume no one wants to finetune 4 text encoders.
return False
def save_model(self, output_path, meta, save_dtype):
# only save the transformer
transformer: OmniGen2Transformer2DModel = unwrap_model(self.model)
transformer.save_pretrained(
save_directory=os.path.join(output_path, "transformer"),
safe_serialization=True,
)
meta_path = os.path.join(output_path, "aitk_meta.yaml")
with open(meta_path, "w") as f:
yaml.dump(meta, f)
def get_loss_target(self, *args, **kwargs):
noise = kwargs.get("noise")
batch = kwargs.get("batch")
# return (noise - batch.latents).detach()
return (batch.latents - noise).detach()
def get_transformer_block_names(self) -> Optional[List[str]]:
# omnigen2 had a few blocks for things like noise_refiner, ref_image_refiner, context_refiner, and layers.
# lets do all but image refiner until we add it
if self.model_config.model_kwargs.get("use_image_refiner", False):
return ["noise_refiner", "context_refiner", "ref_image_refiner", "layers"]
return ["noise_refiner", "context_refiner", "layers"]
def convert_lora_weights_before_save(self, state_dict):
# currently starte with transformer. but needs to start with diffusion_model. for comfyui
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("transformer.", "diffusion_model.")
new_sd[new_key] = value
return new_sd
def convert_lora_weights_before_load(self, state_dict):
# saved as diffusion_model. but needs to be transformer. for ai-toolkit
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("diffusion_model.", "transformer.")
new_sd[new_key] = value
return new_sd
def get_base_model_version(self):
return "omnigen2"
|