File size: 7,391 Bytes
3cc1e25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gc
import os, sys
from tqdm import tqdm
import numpy as np
import json
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

# set visible devices to 0
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"

# protect from formatting
if True:
    import torch
    from optimum.quanto import freeze, qfloat8, QTensor, qint4
    from diffusers import FluxTransformer2DModel, FluxPipeline, AutoencoderKL, FlowMatchEulerDiscreteScheduler
    from toolkit.util.quantize import quantize, get_qtype
    from transformers import T5EncoderModel, T5TokenizerFast, CLIPTextModel, CLIPTokenizer
    from torchvision import transforms

qtype = "qfloat8"
dtype = torch.bfloat16
# base_model_path = "black-forest-labs/FLUX.1-dev"
base_model_path = "ostris/Flex.1-alpha"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Loading Transformer...")
prompt = "Photo of a man and a woman in a park, sunny day"

output_root = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "output")
output_path = os.path.join(output_root, "flex_timestep_weights.json")
img_output_path = os.path.join(output_root, "flex_timestep_weights.png")

quantization_type = get_qtype(qtype)

def flush():
    torch.cuda.empty_cache()
    gc.collect()
    
pil_to_tensor = transforms.ToTensor()
    
with torch.no_grad():
    transformer = FluxTransformer2DModel.from_pretrained(
        base_model_path,
        subfolder='transformer',
        torch_dtype=dtype
    )

    transformer.to(device, dtype=dtype)

    print("Quantizing Transformer...")
    quantize(transformer, weights=quantization_type)
    freeze(transformer)
    flush()

    print("Loading Scheduler...")
    scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(base_model_path, subfolder="scheduler")

    print("Loading Autoencoder...")
    vae = AutoencoderKL.from_pretrained(base_model_path, subfolder="vae", torch_dtype=dtype)

    vae.to(device, dtype=dtype)

    flush()
    print("Loading Text Encoder...")
    tokenizer_2 = T5TokenizerFast.from_pretrained(base_model_path, subfolder="tokenizer_2", torch_dtype=dtype)
    text_encoder_2 = T5EncoderModel.from_pretrained(base_model_path, subfolder="text_encoder_2", torch_dtype=dtype)
    text_encoder_2.to(device, dtype=dtype)

    print("Quantizing Text Encoder...")
    quantize(text_encoder_2, weights=get_qtype(qtype))
    freeze(text_encoder_2)
    flush()

    print("Loading CLIP")
    text_encoder = CLIPTextModel.from_pretrained(base_model_path, subfolder="text_encoder", torch_dtype=dtype)
    tokenizer = CLIPTokenizer.from_pretrained(base_model_path, subfolder="tokenizer", torch_dtype=dtype)
    text_encoder.to(device, dtype=dtype)

    print("Making pipe")
                
    pipe: FluxPipeline = FluxPipeline(
        scheduler=scheduler,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        text_encoder_2=None,
        tokenizer_2=tokenizer_2,
        vae=vae,
        transformer=None,
    )
    pipe.text_encoder_2 = text_encoder_2
    pipe.transformer = transformer
    
    pipe.to(device, dtype=dtype)
    
    print("Encoding prompt...")
    
    prompt_embeds, pooled_prompt_embeds, text_ids = pipe.encode_prompt(
        prompt,
        prompt_2=prompt,
        device=device
    )
    
    
    generator = torch.manual_seed(42)
    
    height = 1024
    width = 1024
    
    print("Generating image...")
    
    # Fix a bug in diffusers/torch
    def callback_on_step_end(pipe, i, t, callback_kwargs):
        latents = callback_kwargs["latents"]
        if latents.dtype != dtype:
            latents = latents.to(dtype)
        return {"latents": latents}
    img = pipe(
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        height=height,
        width=height,
        num_inference_steps=30,
        guidance_scale=3.5,
        generator=generator,
        callback_on_step_end=callback_on_step_end,
    ).images[0]
    
    img.save(img_output_path)
    print(f"Image saved to {img_output_path}")
    
    print("Encoding image...")
    # img is a PIL image. convert it to a -1 to 1 tensor
    img = pil_to_tensor(img)
    img = img.unsqueeze(0)  # add batch dimension
    img = img * 2 - 1  # convert to -1 to 1 range
    img = img.to(device, dtype=dtype)
    latents = vae.encode(img).latent_dist.sample()
    
    shift = vae.config['shift_factor'] if vae.config['shift_factor'] is not None else 0
    latents = vae.config['scaling_factor'] * (latents - shift)
    
    num_channels_latents = pipe.transformer.config.in_channels // 4
    
    l_height = 2 * (int(height) // (pipe.vae_scale_factor * 2))
    l_width = 2 * (int(width) // (pipe.vae_scale_factor * 2))
    packed_latents = pipe._pack_latents(latents, 1, num_channels_latents, l_height, l_width)
    
    packed_latents, latent_image_ids = pipe.prepare_latents(
        1,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        packed_latents,
    )
    
    print("Calculating timestep weights...")
    
    torch.manual_seed(8675309)
    noise = torch.randn_like(packed_latents, device=device, dtype=dtype)
    
    # Create linear timesteps from 1000 to 0
    num_train_timesteps = 1000
    timesteps_torch = torch.linspace(1000, 1, num_train_timesteps, device='cpu')
    timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
    timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
    
    timestep_weights = torch.zeros(num_train_timesteps, dtype=torch.float32, device=device)
    
    guidance = torch.full([1], 1.0, device=device, dtype=torch.float32)
    guidance = guidance.expand(latents.shape[0])
    
    pbar = tqdm(range(num_train_timesteps), desc="loss: 0.000000 scaler: 0.0000")
    for i in pbar:
        timestep = timesteps[i:i+1].to(device)
        t_01 = (timestep / 1000).to(device)
        t_01 = t_01.reshape(-1, 1, 1)
        noisy_latents = (1.0 - t_01) * packed_latents + t_01 * noise
        
        noise_pred = pipe.transformer(
            hidden_states=noisy_latents, # torch.Size([1, 4096, 64])
            timestep=timestep / 1000,
            guidance=guidance,
            pooled_projections=pooled_prompt_embeds,
            encoder_hidden_states=prompt_embeds,
            txt_ids=text_ids,
            img_ids=latent_image_ids,
            return_dict=False,
        )[0]
        
        target = noise - packed_latents
        
        loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float())
        loss = loss
        
        # determine scaler to multiply loss by to make it 1
        scaler = 1.0 / (loss + 1e-6)
        
        timestep_weights[i] = scaler
        pbar.set_description(f"loss: {loss.item():.6f} scaler: {scaler.item():.4f}")
        
    print("normalizing timestep weights...")
    # normalize the timestep weights so they are a mean of 1.0
    timestep_weights = timestep_weights / timestep_weights.mean()
    timestep_weights = timestep_weights.cpu().numpy().tolist()
    
    print("Saving timestep weights...")
    
    with open(output_path, 'w') as f:
        json.dump(timestep_weights, f)
        

print(f"Timestep weights saved to {output_path}")
print("Done!")
flush()