#!/bin/bash set -e -x # export TORCH_LOGS="+dynamo,recompiles,graph_breaks" # export TORCHDYNAMO_VERBOSE=1 export WANDB_MODE="offline" export NCCL_P2P_DISABLE=1 export TORCH_NCCL_ENABLE_MONITORING=0 export FINETRAINERS_LOG_LEVEL="DEBUG" # Finetrainers supports multiple backends for distributed training. Select your favourite and benchmark the differences! # BACKEND="accelerate" BACKEND="ptd" # In this setting, I'm using 2 GPUs on a 4-GPU node for training NUM_GPUS=2 CUDA_VISIBLE_DEVICES="2,3" # Check the JSON files for the expected JSON format TRAINING_DATASET_CONFIG="examples/training/sft/wan/crush_smol_lora/training.json" VALIDATION_DATASET_FILE="examples/training/sft/wan/crush_smol_lora/validation.json" # Depending on how many GPUs you have available, choose your degree of parallelism and technique! DDP_1="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 1 --cp_degree 1 --tp_degree 1" DDP_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 2 --dp_shards 1 --cp_degree 1 --tp_degree 1" DDP_4="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 4 --dp_shards 1 --cp_degree 1 --tp_degree 1" FSDP_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 2 --cp_degree 1 --tp_degree 1" FSDP_4="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 4 --cp_degree 1 --tp_degree 1" HSDP_2_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 2 --dp_shards 2 --cp_degree 1 --tp_degree 1" # Parallel arguments parallel_cmd=( $DDP_2 ) # Model arguments model_cmd=( --model_name "wan" --pretrained_model_name_or_path "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" ) # Dataset arguments # Here, we know that the dataset size if about ~50 videos. Since we're using 2 GPUs, we precompute # embeddings of 25 dataset items per GPU. Also, we're using a very small dataset for finetuning, so # we are okay with precomputing embeddings once and re-using them without having to worry about disk # space. Currently, however, every new training run performs precomputation even if it's not required # (which is something we've to improve [TODO(aryan)]) dataset_cmd=( --dataset_config $TRAINING_DATASET_CONFIG --dataset_shuffle_buffer_size 10 --precomputation_items 25 --precomputation_once ) # Dataloader arguments dataloader_cmd=( --dataloader_num_workers 0 ) # Diffusion arguments diffusion_cmd=( --flow_weighting_scheme "logit_normal" ) # Training arguments # We target just the attention projections layers for LoRA training here. # You can modify as you please and target any layer (regex is supported) training_cmd=( --training_type "lora" --seed 42 --batch_size 1 --train_steps 3000 --rank 32 --lora_alpha 32 --target_modules "blocks.*(to_q|to_k|to_v|to_out.0)" --gradient_accumulation_steps 1 --gradient_checkpointing --checkpointing_steps 500 --checkpointing_limit 2 # --resume_from_checkpoint 3000 --enable_slicing --enable_tiling ) # Optimizer arguments optimizer_cmd=( --optimizer "adamw" --lr 5e-5 --lr_scheduler "constant_with_warmup" --lr_warmup_steps 1000 --lr_num_cycles 1 --beta1 0.9 --beta2 0.99 --weight_decay 1e-4 --epsilon 1e-8 --max_grad_norm 1.0 ) # Validation arguments validation_cmd=( --validation_dataset_file "$VALIDATION_DATASET_FILE" --validation_steps 500 ) # Miscellaneous arguments miscellaneous_cmd=( --tracker_name "finetrainers-wan" --output_dir "/raid/aryan/wan" --init_timeout 600 --nccl_timeout 600 --report_to "wandb" ) # Execute the training script if [ "$BACKEND" == "accelerate" ]; then ACCELERATE_CONFIG_FILE="" if [ "$NUM_GPUS" == 1 ]; then ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_1.yaml" elif [ "$NUM_GPUS" == 2 ]; then ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_2.yaml" elif [ "$NUM_GPUS" == 4 ]; then ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_4.yaml" elif [ "$NUM_GPUS" == 8 ]; then ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_8.yaml" fi accelerate launch --config_file "$ACCELERATE_CONFIG_FILE" --gpu_ids $CUDA_VISIBLE_DEVICES train.py \ "${parallel_cmd[@]}" \ "${model_cmd[@]}" \ "${dataset_cmd[@]}" \ "${dataloader_cmd[@]}" \ "${diffusion_cmd[@]}" \ "${training_cmd[@]}" \ "${optimizer_cmd[@]}" \ "${validation_cmd[@]}" \ "${miscellaneous_cmd[@]}" elif [ "$BACKEND" == "ptd" ]; then export CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES torchrun \ --standalone \ --nnodes=1 \ --nproc_per_node=$NUM_GPUS \ --rdzv_backend c10d \ --rdzv_endpoint="localhost:0" \ train.py \ "${parallel_cmd[@]}" \ "${model_cmd[@]}" \ "${dataset_cmd[@]}" \ "${dataloader_cmd[@]}" \ "${diffusion_cmd[@]}" \ "${training_cmd[@]}" \ "${optimizer_cmd[@]}" \ "${validation_cmd[@]}" \ "${miscellaneous_cmd[@]}" fi echo -ne "-------------------- Finished executing script --------------------\n\n"