Spaces:
Running
Running
Commit
·
80ebcb3
1
Parent(s):
76eb17f
upgrading finetrainers (and losing my extra code + improvements)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- accelerate_configs/uncompiled_4.yaml +17 -0
- finetrainers/__init__.py +5 -2
- finetrainers/args.py +447 -778
- finetrainers/config.py +52 -0
- finetrainers/constants.py +3 -0
- finetrainers/data/__init__.py +19 -0
- finetrainers/data/_artifact.py +29 -0
- finetrainers/data/dataloader.py +40 -0
- finetrainers/data/dataset.py +844 -0
- finetrainers/data/precomputation.py +163 -0
- finetrainers/data/sampler.py +58 -0
- finetrainers/data/utils.py +20 -0
- finetrainers/dataset.py +0 -564
- finetrainers/functional/__init__.py +16 -0
- finetrainers/functional/diffusion.py +11 -0
- finetrainers/functional/image.py +54 -0
- finetrainers/functional/text.py +26 -0
- finetrainers/functional/video.py +94 -0
- finetrainers/hooks/__init__.py +0 -1
- finetrainers/hooks/hooks.py +0 -176
- finetrainers/hooks/layerwise_upcasting.py +0 -140
- finetrainers/logging.py +111 -0
- finetrainers/models/__init__.py +1 -33
- finetrainers/models/cogvideox/__init__.py +1 -2
- finetrainers/models/cogvideox/base_specification.py +424 -0
- finetrainers/models/cogvideox/full_finetune.py +0 -32
- finetrainers/models/cogvideox/lora.py +0 -334
- finetrainers/models/hunyuan_video/__init__.py +1 -2
- finetrainers/models/hunyuan_video/base_specification.py +413 -0
- finetrainers/models/hunyuan_video/full_finetune.py +0 -30
- finetrainers/models/hunyuan_video/lora.py +0 -368
- finetrainers/models/ltx_video/__init__.py +1 -2
- finetrainers/models/ltx_video/base_specification.py +522 -0
- finetrainers/models/ltx_video/full_finetune.py +0 -30
- finetrainers/models/ltx_video/lora.py +0 -331
- finetrainers/models/modeling_utils.py +292 -0
- finetrainers/models/utils.py +62 -0
- finetrainers/models/wan/__init__.py +1 -0
- finetrainers/models/wan/base_specification.py +378 -0
- finetrainers/optimizer.py +449 -0
- finetrainers/parallel/__init__.py +22 -0
- finetrainers/parallel/accelerate.py +218 -0
- finetrainers/parallel/base.py +96 -0
- finetrainers/parallel/deepspeed.py +7 -0
- finetrainers/parallel/ptd.py +228 -0
- finetrainers/parallel/utils.py +99 -0
- finetrainers/patches/__init__.py +23 -0
- finetrainers/{patches.py → patches/dependencies/peft/patch.py} +3 -28
- finetrainers/patches/models/ltx_video/patch.py +127 -0
- finetrainers/patches/utils.py +18 -0
accelerate_configs/uncompiled_4.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
compute_environment: LOCAL_MACHINE
|
2 |
+
debug: false
|
3 |
+
distributed_type: MULTI_GPU
|
4 |
+
downcast_bf16: 'no'
|
5 |
+
enable_cpu_affinity: false
|
6 |
+
gpu_ids: 0,1,2,3
|
7 |
+
machine_rank: 0
|
8 |
+
main_training_function: main
|
9 |
+
mixed_precision: bf16
|
10 |
+
num_machines: 1
|
11 |
+
num_processes: 4
|
12 |
+
rdzv_backend: static
|
13 |
+
same_network: true
|
14 |
+
tpu_env: []
|
15 |
+
tpu_use_cluster: false
|
16 |
+
tpu_use_sudo: false
|
17 |
+
use_cpu: false
|
finetrainers/__init__.py
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
-
from .args import
|
2 |
-
from .
|
|
|
|
|
|
|
|
1 |
+
from .args import BaseArgs
|
2 |
+
from .config import ModelType, TrainingType
|
3 |
+
from .logging import get_logger
|
4 |
+
from .models import ModelSpecification
|
5 |
+
from .trainer import SFTTrainer
|
finetrainers/args.py
CHANGED
@@ -1,14 +1,21 @@
|
|
1 |
import argparse
|
|
|
|
|
2 |
import sys
|
3 |
-
from typing import Any, Dict, List, Optional
|
4 |
|
5 |
import torch
|
6 |
|
7 |
-
from .
|
8 |
-
from .
|
|
|
|
|
9 |
|
10 |
|
11 |
-
|
|
|
|
|
|
|
12 |
r"""
|
13 |
The arguments for the finetrainers training script.
|
14 |
|
@@ -19,6 +26,19 @@ class Args:
|
|
19 |
TODO(aryan): add `python train.py --memory_requirements --model_name <model_name>` to show
|
20 |
memory requirements per model, per training type with sensible training settings.
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
MODEL ARGUMENTS
|
23 |
---------------
|
24 |
model_name (`str`):
|
@@ -33,6 +53,22 @@ class Args:
|
|
33 |
storage requirements.
|
34 |
cache_dir (`str`, defaults to `None`):
|
35 |
The directory where the downloaded models and datasets will be stored, or loaded from.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
text_encoder_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
|
37 |
Data type for the text encoder when generating text embeddings.
|
38 |
text_encoder_2_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
|
@@ -54,41 +90,47 @@ class Args:
|
|
54 |
|
55 |
DATASET ARGUMENTS
|
56 |
-----------------
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
DATALOADER_ARGUMENTS
|
94 |
--------------------
|
@@ -136,16 +178,11 @@ class Args:
|
|
136 |
A seed for reproducible training.
|
137 |
batch_size (`int`, defaults to `1`):
|
138 |
Per-device batch size.
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
The rank for LoRA matrices.
|
145 |
-
lora_alpha (`float`, defaults to `64`):
|
146 |
-
The lora_alpha to compute scaling factor (lora_alpha / rank) for LoRA matrices.
|
147 |
-
target_modules (`List[str]`, defaults to `["to_k", "to_q", "to_v", "to_out.0"]`):
|
148 |
-
The target modules for LoRA. Make sure to modify this based on the model.
|
149 |
gradient_accumulation_steps (`int`, defaults to `1`):
|
150 |
Number of gradients steps to accumulate before performing an optimizer step.
|
151 |
gradient_checkpointing (`bool`, defaults to `False`):
|
@@ -164,13 +201,11 @@ class Args:
|
|
164 |
OPTIMIZER ARGUMENTS
|
165 |
-------------------
|
166 |
optimizer (`str`, defaults to `adamw`):
|
167 |
-
The optimizer type to use. Choose between
|
168 |
-
|
169 |
-
|
170 |
lr (`float`, defaults to `1e-4`):
|
171 |
Initial learning rate (after the potential warmup period) to use.
|
172 |
-
scale_lr (`bool`, defaults to `False`):
|
173 |
-
Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.
|
174 |
lr_scheduler (`str`, defaults to `cosine_with_restarts`):
|
175 |
The scheduler type to use. Choose between ['linear', 'cosine', 'cosine_with_restarts', 'polynomial',
|
176 |
'constant', 'constant_with_warmup'].
|
@@ -192,29 +227,21 @@ class Args:
|
|
192 |
|
193 |
VALIDATION ARGUMENTS
|
194 |
--------------------
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
List
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
num_validation_videos_per_prompt (`int`, defaults to `1`):
|
209 |
-
Number of videos to use for validation per prompt.
|
210 |
-
validation_every_n_epochs (`int`, defaults to `None`):
|
211 |
-
Perform validation every `n` training epochs.
|
212 |
-
validation_every_n_steps (`int`, defaults to `None`):
|
213 |
-
Perform validation every `n` training steps.
|
214 |
enable_model_cpu_offload (`bool`, defaults to `False`):
|
215 |
Whether or not to offload different modeling components to CPU during validation.
|
216 |
-
validation_frame_rate (`int`, defaults to `25`):
|
217 |
-
Frame rate to use for the validation videos. This value is defaulted to 25, as used in LTX Video pipeline.
|
218 |
|
219 |
MISCELLANEOUS ARGUMENTS
|
220 |
-----------------------
|
@@ -230,20 +257,44 @@ class Args:
|
|
230 |
The directory where the model checkpoints and logs will be stored.
|
231 |
logging_dir (`str`, defaults to `logs`):
|
232 |
The directory where the logs will be stored.
|
|
|
|
|
233 |
allow_tf32 (`bool`, defaults to `False`):
|
234 |
Whether or not to allow the use of TF32 matmul on compatible hardware.
|
235 |
nccl_timeout (`int`, defaults to `1800`):
|
236 |
Timeout for the NCCL communication.
|
237 |
report_to (`str`, defaults to `wandb`):
|
238 |
The name of the logger to use for logging training metrics. Choose between ['wandb'].
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
"""
|
240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
# Model arguments
|
242 |
model_name: str = None
|
243 |
pretrained_model_name_or_path: str = None
|
244 |
revision: Optional[str] = None
|
245 |
variant: Optional[str] = None
|
246 |
cache_dir: Optional[str] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
text_encoder_dtype: torch.dtype = torch.bfloat16
|
248 |
text_encoder_2_dtype: torch.dtype = torch.bfloat16
|
249 |
text_encoder_3_dtype: torch.dtype = torch.bfloat16
|
@@ -263,18 +314,11 @@ class Args:
|
|
263 |
]
|
264 |
|
265 |
# Dataset arguments
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
image_resolution_buckets: List[Tuple[int, int]] = None
|
272 |
-
video_resolution_buckets: List[Tuple[int, int, int]] = None
|
273 |
-
video_reshape_mode: Optional[str] = None
|
274 |
-
caption_dropout_p: float = 0.00
|
275 |
-
caption_dropout_technique: str = "empty"
|
276 |
-
precompute_conditions: bool = False
|
277 |
-
remove_common_llm_caption_prefixes: bool = False
|
278 |
|
279 |
# Dataloader arguments
|
280 |
dataloader_num_workers: int = 0
|
@@ -296,11 +340,8 @@ class Args:
|
|
296 |
training_type: str = None
|
297 |
seed: int = 42
|
298 |
batch_size: int = 1
|
299 |
-
|
300 |
-
|
301 |
-
rank: int = 128
|
302 |
-
lora_alpha: float = 64
|
303 |
-
target_modules: List[str] = ["to_k", "to_q", "to_v", "to_out.0"]
|
304 |
gradient_accumulation_steps: int = 1
|
305 |
gradient_checkpointing: bool = False
|
306 |
checkpointing_steps: int = 500
|
@@ -311,9 +352,7 @@ class Args:
|
|
311 |
|
312 |
# Optimizer arguments
|
313 |
optimizer: str = "adamw"
|
314 |
-
use_8bit_bnb: bool = False
|
315 |
lr: float = 1e-4
|
316 |
-
scale_lr: bool = False
|
317 |
lr_scheduler: str = "cosine_with_restarts"
|
318 |
lr_warmup_steps: int = 0
|
319 |
lr_num_cycles: int = 1
|
@@ -326,17 +365,9 @@ class Args:
|
|
326 |
max_grad_norm: float = 1.0
|
327 |
|
328 |
# Validation arguments
|
329 |
-
|
330 |
-
|
331 |
-
validation_videos: List[str] = None
|
332 |
-
validation_heights: List[int] = None
|
333 |
-
validation_widths: List[int] = None
|
334 |
-
validation_num_frames: List[int] = None
|
335 |
-
num_validation_videos_per_prompt: int = 1
|
336 |
-
validation_every_n_epochs: Optional[int] = None
|
337 |
-
validation_every_n_steps: Optional[int] = None
|
338 |
enable_model_cpu_offload: bool = False
|
339 |
-
validation_frame_rate: int = 25
|
340 |
|
341 |
# Miscellaneous arguments
|
342 |
tracker_name: str = "finetrainers"
|
@@ -345,664 +376,343 @@ class Args:
|
|
345 |
hub_model_id: Optional[str] = None
|
346 |
output_dir: str = None
|
347 |
logging_dir: Optional[str] = "logs"
|
|
|
348 |
allow_tf32: bool = False
|
349 |
-
|
|
|
350 |
report_to: str = "wandb"
|
|
|
351 |
|
352 |
def to_dict(self) -> Dict[str, Any]:
|
353 |
-
|
354 |
-
"
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
"cache_dir": self.cache_dir,
|
360 |
-
"text_encoder_dtype": self.text_encoder_dtype,
|
361 |
-
"text_encoder_2_dtype": self.text_encoder_2_dtype,
|
362 |
-
"text_encoder_3_dtype": self.text_encoder_3_dtype,
|
363 |
-
"transformer_dtype": self.transformer_dtype,
|
364 |
-
"vae_dtype": self.vae_dtype,
|
365 |
-
"layerwise_upcasting_modules": self.layerwise_upcasting_modules,
|
366 |
-
"layerwise_upcasting_storage_dtype": self.layerwise_upcasting_storage_dtype,
|
367 |
-
"layerwise_upcasting_skip_modules_pattern": self.layerwise_upcasting_skip_modules_pattern,
|
368 |
-
},
|
369 |
-
"dataset_arguments": {
|
370 |
-
"data_root": self.data_root,
|
371 |
-
"dataset_file": self.dataset_file,
|
372 |
-
"video_column": self.video_column,
|
373 |
-
"caption_column": self.caption_column,
|
374 |
-
"id_token": self.id_token,
|
375 |
-
"image_resolution_buckets": self.image_resolution_buckets,
|
376 |
-
"video_resolution_buckets": self.video_resolution_buckets,
|
377 |
-
"video_reshape_mode": self.video_reshape_mode,
|
378 |
-
"caption_dropout_p": self.caption_dropout_p,
|
379 |
-
"caption_dropout_technique": self.caption_dropout_technique,
|
380 |
-
"precompute_conditions": self.precompute_conditions,
|
381 |
-
"remove_common_llm_caption_prefixes": self.remove_common_llm_caption_prefixes,
|
382 |
-
},
|
383 |
-
"dataloader_arguments": {
|
384 |
-
"dataloader_num_workers": self.dataloader_num_workers,
|
385 |
-
"pin_memory": self.pin_memory,
|
386 |
-
},
|
387 |
-
"diffusion_arguments": {
|
388 |
-
"flow_resolution_shifting": self.flow_resolution_shifting,
|
389 |
-
"flow_base_seq_len": self.flow_base_seq_len,
|
390 |
-
"flow_max_seq_len": self.flow_max_seq_len,
|
391 |
-
"flow_base_shift": self.flow_base_shift,
|
392 |
-
"flow_max_shift": self.flow_max_shift,
|
393 |
-
"flow_shift": self.flow_shift,
|
394 |
-
"flow_weighting_scheme": self.flow_weighting_scheme,
|
395 |
-
"flow_logit_mean": self.flow_logit_mean,
|
396 |
-
"flow_logit_std": self.flow_logit_std,
|
397 |
-
"flow_mode_scale": self.flow_mode_scale,
|
398 |
-
},
|
399 |
-
"training_arguments": {
|
400 |
-
"training_type": self.training_type,
|
401 |
-
"seed": self.seed,
|
402 |
-
"batch_size": self.batch_size,
|
403 |
-
"train_epochs": self.train_epochs,
|
404 |
-
"train_steps": self.train_steps,
|
405 |
-
"rank": self.rank,
|
406 |
-
"lora_alpha": self.lora_alpha,
|
407 |
-
"target_modules": self.target_modules,
|
408 |
-
"gradient_accumulation_steps": self.gradient_accumulation_steps,
|
409 |
-
"gradient_checkpointing": self.gradient_checkpointing,
|
410 |
-
"checkpointing_steps": self.checkpointing_steps,
|
411 |
-
"checkpointing_limit": self.checkpointing_limit,
|
412 |
-
"resume_from_checkpoint": self.resume_from_checkpoint,
|
413 |
-
"enable_slicing": self.enable_slicing,
|
414 |
-
"enable_tiling": self.enable_tiling,
|
415 |
-
},
|
416 |
-
"optimizer_arguments": {
|
417 |
-
"optimizer": self.optimizer,
|
418 |
-
"use_8bit_bnb": self.use_8bit_bnb,
|
419 |
-
"lr": self.lr,
|
420 |
-
"scale_lr": self.scale_lr,
|
421 |
-
"lr_scheduler": self.lr_scheduler,
|
422 |
-
"lr_warmup_steps": self.lr_warmup_steps,
|
423 |
-
"lr_num_cycles": self.lr_num_cycles,
|
424 |
-
"lr_power": self.lr_power,
|
425 |
-
"beta1": self.beta1,
|
426 |
-
"beta2": self.beta2,
|
427 |
-
"beta3": self.beta3,
|
428 |
-
"weight_decay": self.weight_decay,
|
429 |
-
"epsilon": self.epsilon,
|
430 |
-
"max_grad_norm": self.max_grad_norm,
|
431 |
-
},
|
432 |
-
"validation_arguments": {
|
433 |
-
"validation_prompts": self.validation_prompts,
|
434 |
-
"validation_images": self.validation_images,
|
435 |
-
"validation_videos": self.validation_videos,
|
436 |
-
"num_validation_videos_per_prompt": self.num_validation_videos_per_prompt,
|
437 |
-
"validation_every_n_epochs": self.validation_every_n_epochs,
|
438 |
-
"validation_every_n_steps": self.validation_every_n_steps,
|
439 |
-
"enable_model_cpu_offload": self.enable_model_cpu_offload,
|
440 |
-
"validation_frame_rate": self.validation_frame_rate,
|
441 |
-
},
|
442 |
-
"miscellaneous_arguments": {
|
443 |
-
"tracker_name": self.tracker_name,
|
444 |
-
"push_to_hub": self.push_to_hub,
|
445 |
-
"hub_token": self.hub_token,
|
446 |
-
"hub_model_id": self.hub_model_id,
|
447 |
-
"output_dir": self.output_dir,
|
448 |
-
"logging_dir": self.logging_dir,
|
449 |
-
"allow_tf32": self.allow_tf32,
|
450 |
-
"nccl_timeout": self.nccl_timeout,
|
451 |
-
"report_to": self.report_to,
|
452 |
-
},
|
453 |
}
|
454 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
def parse_arguments() -> Args:
|
461 |
-
parser = argparse.ArgumentParser()
|
462 |
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
|
|
|
|
|
|
472 |
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
|
478 |
-
|
479 |
-
|
480 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
481 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
|
483 |
-
def
|
484 |
-
|
485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
_validate_validation_args(args)
|
487 |
|
488 |
|
489 |
-
def
|
490 |
-
parser.add_argument(
|
491 |
-
"--model_name",
|
492 |
-
type=str,
|
493 |
-
required=True,
|
494 |
-
choices=list(SUPPORTED_MODEL_CONFIGS.keys()),
|
495 |
-
help="Name of model to train.",
|
496 |
-
)
|
497 |
-
parser.add_argument(
|
498 |
-
"--pretrained_model_name_or_path",
|
499 |
-
type=str,
|
500 |
-
required=True,
|
501 |
-
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
502 |
-
)
|
503 |
parser.add_argument(
|
504 |
-
"--
|
505 |
type=str,
|
506 |
-
default=
|
507 |
-
|
508 |
-
help="Revision of pretrained model identifier from huggingface.co/models.",
|
509 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
510 |
parser.add_argument(
|
511 |
-
"--
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
)
|
516 |
-
parser.add_argument(
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
)
|
522 |
-
parser.add_argument("--
|
523 |
-
parser.add_argument("--
|
524 |
-
parser.add_argument("--
|
525 |
-
parser.add_argument("--
|
526 |
-
parser.add_argument("--
|
527 |
-
parser.add_argument(
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
nargs="+",
|
532 |
-
choices=["transformer"],
|
533 |
-
help="Modules that should have fp8 storage weights but higher precision computation.",
|
534 |
-
)
|
535 |
parser.add_argument(
|
536 |
"--layerwise_upcasting_storage_dtype",
|
537 |
type=str,
|
538 |
default="float8_e4m3fn",
|
539 |
choices=["float8_e4m3fn", "float8_e5m2"],
|
540 |
-
help="Data type for the layerwise upcasting storage.",
|
541 |
)
|
542 |
parser.add_argument(
|
543 |
"--layerwise_upcasting_skip_modules_pattern",
|
544 |
type=str,
|
545 |
default=["patch_embed", "pos_embed", "x_embedder", "context_embedder", "^proj_in$", "^proj_out$", "norm"],
|
546 |
nargs="+",
|
547 |
-
help="Modules to skip for layerwise upcasting.",
|
548 |
)
|
549 |
|
550 |
|
551 |
def _add_dataset_arguments(parser: argparse.ArgumentParser) -> None:
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
assert (
|
558 |
-
len(resolution_bucket) == 2
|
559 |
-
), f"Expected 2D resolution bucket, got {len(resolution_bucket)}D resolution bucket"
|
560 |
-
return resolution_bucket
|
561 |
-
|
562 |
-
def parse_video_resolution_bucket(resolution_bucket: str) -> Tuple[int, int, int]:
|
563 |
-
resolution_bucket = parse_resolution_bucket(resolution_bucket)
|
564 |
-
assert (
|
565 |
-
len(resolution_bucket) == 3
|
566 |
-
), f"Expected 3D resolution bucket, got {len(resolution_bucket)}D resolution bucket"
|
567 |
-
return resolution_bucket
|
568 |
-
|
569 |
-
parser.add_argument(
|
570 |
-
"--data_root",
|
571 |
-
type=str,
|
572 |
-
required=True,
|
573 |
-
help=("A folder containing the training data."),
|
574 |
-
)
|
575 |
-
parser.add_argument(
|
576 |
-
"--dataset_file",
|
577 |
-
type=str,
|
578 |
-
default=None,
|
579 |
-
help=("Path to a CSV file if loading prompts/video paths using this format."),
|
580 |
-
)
|
581 |
-
parser.add_argument(
|
582 |
-
"--video_column",
|
583 |
-
type=str,
|
584 |
-
default="video",
|
585 |
-
help="The column of the dataset containing videos. Or, the name of the file in `--data_root` folder containing the line-separated path to video data.",
|
586 |
-
)
|
587 |
-
parser.add_argument(
|
588 |
-
"--caption_column",
|
589 |
-
type=str,
|
590 |
-
default="text",
|
591 |
-
help="The column of the dataset containing the instance prompt for each video. Or, the name of the file in `--data_root` folder containing the line-separated instance prompts.",
|
592 |
-
)
|
593 |
-
parser.add_argument(
|
594 |
-
"--id_token",
|
595 |
-
type=str,
|
596 |
-
default=None,
|
597 |
-
help="Identifier token appended to the start of each prompt if provided.",
|
598 |
-
)
|
599 |
-
parser.add_argument(
|
600 |
-
"--image_resolution_buckets",
|
601 |
-
type=parse_image_resolution_bucket,
|
602 |
-
default=None,
|
603 |
-
nargs="+",
|
604 |
-
help="Resolution buckets for images.",
|
605 |
-
)
|
606 |
-
parser.add_argument(
|
607 |
-
"--video_resolution_buckets",
|
608 |
-
type=parse_video_resolution_bucket,
|
609 |
-
default=None,
|
610 |
-
nargs="+",
|
611 |
-
help="Resolution buckets for videos.",
|
612 |
-
)
|
613 |
-
parser.add_argument(
|
614 |
-
"--video_reshape_mode",
|
615 |
-
type=str,
|
616 |
-
default=None,
|
617 |
-
help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']",
|
618 |
-
)
|
619 |
-
parser.add_argument(
|
620 |
-
"--caption_dropout_p",
|
621 |
-
type=float,
|
622 |
-
default=0.00,
|
623 |
-
help="Probability of dropout for the caption tokens.",
|
624 |
-
)
|
625 |
-
parser.add_argument(
|
626 |
-
"--caption_dropout_technique",
|
627 |
-
type=str,
|
628 |
-
default="empty",
|
629 |
-
choices=["empty", "zero"],
|
630 |
-
help="Technique to use for caption dropout.",
|
631 |
-
)
|
632 |
-
parser.add_argument(
|
633 |
-
"--precompute_conditions",
|
634 |
-
action="store_true",
|
635 |
-
help="Whether or not to precompute the conditionings for the model.",
|
636 |
-
)
|
637 |
-
parser.add_argument(
|
638 |
-
"--remove_common_llm_caption_prefixes",
|
639 |
-
action="store_true",
|
640 |
-
help="Whether or not to remove common LLM caption prefixes.",
|
641 |
-
)
|
642 |
|
643 |
|
644 |
def _add_dataloader_arguments(parser: argparse.ArgumentParser) -> None:
|
645 |
-
parser.add_argument(
|
646 |
-
|
647 |
-
type=int,
|
648 |
-
default=0,
|
649 |
-
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
|
650 |
-
)
|
651 |
-
parser.add_argument(
|
652 |
-
"--pin_memory",
|
653 |
-
action="store_true",
|
654 |
-
help="Whether or not to use the pinned memory setting in pytorch dataloader.",
|
655 |
-
)
|
656 |
|
657 |
|
658 |
def _add_diffusion_arguments(parser: argparse.ArgumentParser) -> None:
|
659 |
-
parser.add_argument(
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
)
|
664 |
-
parser.add_argument(
|
665 |
-
"--flow_base_seq_len",
|
666 |
-
type=int,
|
667 |
-
default=256,
|
668 |
-
help="Base image/video sequence length for the diffusion model.",
|
669 |
-
)
|
670 |
-
parser.add_argument(
|
671 |
-
"--flow_max_seq_len",
|
672 |
-
type=int,
|
673 |
-
default=4096,
|
674 |
-
help="Maximum image/video sequence length for the diffusion model.",
|
675 |
-
)
|
676 |
-
parser.add_argument(
|
677 |
-
"--flow_base_shift",
|
678 |
-
type=float,
|
679 |
-
default=0.5,
|
680 |
-
help="Base shift as described in [Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2403.03206)",
|
681 |
-
)
|
682 |
-
parser.add_argument(
|
683 |
-
"--flow_max_shift",
|
684 |
-
type=float,
|
685 |
-
default=1.15,
|
686 |
-
help="Maximum shift as described in [Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2403.03206)",
|
687 |
-
)
|
688 |
-
parser.add_argument(
|
689 |
-
"--flow_shift",
|
690 |
-
type=float,
|
691 |
-
default=1.0,
|
692 |
-
help="Shift value to use for the flow matching timestep schedule.",
|
693 |
-
)
|
694 |
parser.add_argument(
|
695 |
"--flow_weighting_scheme",
|
696 |
type=str,
|
697 |
default="none",
|
698 |
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
|
699 |
-
help='We default to the "none" weighting scheme for uniform sampling and uniform loss',
|
700 |
-
)
|
701 |
-
parser.add_argument(
|
702 |
-
"--flow_logit_mean",
|
703 |
-
type=float,
|
704 |
-
default=0.0,
|
705 |
-
help="Mean to use when using the `'logit_normal'` weighting scheme.",
|
706 |
-
)
|
707 |
-
parser.add_argument(
|
708 |
-
"--flow_logit_std",
|
709 |
-
type=float,
|
710 |
-
default=1.0,
|
711 |
-
help="Standard deviation to use when using the `'logit_normal'` weighting scheme.",
|
712 |
-
)
|
713 |
-
parser.add_argument(
|
714 |
-
"--flow_mode_scale",
|
715 |
-
type=float,
|
716 |
-
default=1.29,
|
717 |
-
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.",
|
718 |
)
|
|
|
|
|
|
|
719 |
|
720 |
|
721 |
def _add_training_arguments(parser: argparse.ArgumentParser) -> None:
|
722 |
-
# TODO: support full finetuning and other kinds
|
723 |
-
parser.add_argument(
|
724 |
-
"--training_type",
|
725 |
-
type=str,
|
726 |
-
choices=["lora", "full-finetune"],
|
727 |
-
required=True,
|
728 |
-
help="Type of training to perform. Choose between ['lora', 'full-finetune']",
|
729 |
-
)
|
730 |
-
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
731 |
-
parser.add_argument(
|
732 |
-
"--batch_size",
|
733 |
-
type=int,
|
734 |
-
default=1,
|
735 |
-
help="Batch size (per device) for the training dataloader.",
|
736 |
-
)
|
737 |
-
parser.add_argument("--train_epochs", type=int, default=1, help="Number of training epochs.")
|
738 |
-
parser.add_argument(
|
739 |
-
"--train_steps",
|
740 |
-
type=int,
|
741 |
-
default=None,
|
742 |
-
help="Total number of training steps to perform. If provided, overrides `--num_train_epochs`.",
|
743 |
-
)
|
744 |
-
parser.add_argument("--rank", type=int, default=64, help="The rank for LoRA matrices.")
|
745 |
-
parser.add_argument(
|
746 |
-
"--lora_alpha",
|
747 |
-
type=int,
|
748 |
-
default=64,
|
749 |
-
help="The lora_alpha to compute scaling factor (lora_alpha / rank) for LoRA matrices.",
|
750 |
-
)
|
751 |
-
parser.add_argument(
|
752 |
-
"--target_modules",
|
753 |
-
type=str,
|
754 |
-
default=["to_k", "to_q", "to_v", "to_out.0"],
|
755 |
-
nargs="+",
|
756 |
-
help="The target modules for LoRA.",
|
757 |
-
)
|
758 |
-
parser.add_argument(
|
759 |
-
"--gradient_accumulation_steps",
|
760 |
-
type=int,
|
761 |
-
default=1,
|
762 |
-
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
763 |
-
)
|
764 |
parser.add_argument(
|
765 |
-
"--
|
766 |
-
action="store_true",
|
767 |
-
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
768 |
-
)
|
769 |
-
parser.add_argument(
|
770 |
-
"--checkpointing_steps",
|
771 |
-
type=int,
|
772 |
-
default=500,
|
773 |
-
help=(
|
774 |
-
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
775 |
-
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
776 |
-
" training using `--resume_from_checkpoint`."
|
777 |
-
),
|
778 |
-
)
|
779 |
-
parser.add_argument(
|
780 |
-
"--checkpointing_limit",
|
781 |
-
type=int,
|
782 |
-
default=None,
|
783 |
-
help=("Max number of checkpoints to store."),
|
784 |
-
)
|
785 |
-
parser.add_argument(
|
786 |
-
"--resume_from_checkpoint",
|
787 |
-
type=str,
|
788 |
-
default=None,
|
789 |
-
help=(
|
790 |
-
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
791 |
-
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
792 |
-
),
|
793 |
-
)
|
794 |
-
parser.add_argument(
|
795 |
-
"--enable_slicing",
|
796 |
-
action="store_true",
|
797 |
-
help="Whether or not to use VAE slicing for saving memory.",
|
798 |
-
)
|
799 |
-
parser.add_argument(
|
800 |
-
"--enable_tiling",
|
801 |
-
action="store_true",
|
802 |
-
help="Whether or not to use VAE tiling for saving memory.",
|
803 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
804 |
|
805 |
|
806 |
def _add_optimizer_arguments(parser: argparse.ArgumentParser) -> None:
|
807 |
-
parser.add_argument(
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
)
|
813 |
-
parser.add_argument(
|
814 |
-
"--scale_lr",
|
815 |
-
action="store_true",
|
816 |
-
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
817 |
-
)
|
818 |
-
parser.add_argument(
|
819 |
-
"--lr_scheduler",
|
820 |
-
type=str,
|
821 |
-
default="constant",
|
822 |
-
help=(
|
823 |
-
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
824 |
-
' "constant", "constant_with_warmup"]'
|
825 |
-
),
|
826 |
-
)
|
827 |
-
parser.add_argument(
|
828 |
-
"--lr_warmup_steps",
|
829 |
-
type=int,
|
830 |
-
default=500,
|
831 |
-
help="Number of steps for the warmup in the lr scheduler.",
|
832 |
-
)
|
833 |
-
parser.add_argument(
|
834 |
-
"--lr_num_cycles",
|
835 |
-
type=int,
|
836 |
-
default=1,
|
837 |
-
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
838 |
-
)
|
839 |
-
parser.add_argument(
|
840 |
-
"--lr_power",
|
841 |
-
type=float,
|
842 |
-
default=1.0,
|
843 |
-
help="Power factor of the polynomial scheduler.",
|
844 |
-
)
|
845 |
parser.add_argument(
|
846 |
"--optimizer",
|
847 |
type=lambda s: s.lower(),
|
848 |
default="adam",
|
849 |
-
choices=["adam", "adamw"],
|
850 |
-
help=("The optimizer type to use."),
|
851 |
)
|
852 |
-
parser.add_argument(
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
)
|
857 |
-
parser.add_argument(
|
858 |
-
"--beta1",
|
859 |
-
type=float,
|
860 |
-
default=0.9,
|
861 |
-
help="The beta1 parameter for the Adam and Prodigy optimizers.",
|
862 |
-
)
|
863 |
-
parser.add_argument(
|
864 |
-
"--beta2",
|
865 |
-
type=float,
|
866 |
-
default=0.95,
|
867 |
-
help="The beta2 parameter for the Adam and Prodigy optimizers.",
|
868 |
-
)
|
869 |
-
parser.add_argument(
|
870 |
-
"--beta3",
|
871 |
-
type=float,
|
872 |
-
default=None,
|
873 |
-
help="Coefficients for computing the Prodigy optimizer's stepsize using running averages. If set to None, uses the value of square root of beta2.",
|
874 |
-
)
|
875 |
-
parser.add_argument(
|
876 |
-
"--weight_decay",
|
877 |
-
type=float,
|
878 |
-
default=1e-04,
|
879 |
-
help="Weight decay to use for optimizer.",
|
880 |
-
)
|
881 |
-
parser.add_argument(
|
882 |
-
"--epsilon",
|
883 |
-
type=float,
|
884 |
-
default=1e-8,
|
885 |
-
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
|
886 |
-
)
|
887 |
-
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
888 |
|
889 |
|
890 |
def _add_validation_arguments(parser: argparse.ArgumentParser) -> None:
|
891 |
-
parser.add_argument(
|
892 |
-
|
893 |
-
|
894 |
-
default=None,
|
895 |
-
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.",
|
896 |
-
)
|
897 |
-
parser.add_argument(
|
898 |
-
"--validation_images",
|
899 |
-
type=str,
|
900 |
-
default=None,
|
901 |
-
help="One or more image path(s)/URLs that is used during validation to verify that the model is learning. Multiple validation paths should be separated by the '--validation_prompt_seperator' string. These should correspond to the order of the validation prompts.",
|
902 |
-
)
|
903 |
-
parser.add_argument(
|
904 |
-
"--validation_videos",
|
905 |
-
type=str,
|
906 |
-
default=None,
|
907 |
-
help="One or more video path(s)/URLs that is used during validation to verify that the model is learning. Multiple validation paths should be separated by the '--validation_prompt_seperator' string. These should correspond to the order of the validation prompts.",
|
908 |
-
)
|
909 |
-
parser.add_argument(
|
910 |
-
"--validation_separator",
|
911 |
-
type=str,
|
912 |
-
default=":::",
|
913 |
-
help="String that separates multiple validation prompts",
|
914 |
-
)
|
915 |
-
parser.add_argument(
|
916 |
-
"--num_validation_videos",
|
917 |
-
type=int,
|
918 |
-
default=1,
|
919 |
-
help="Number of videos that should be generated during validation per `validation_prompt`.",
|
920 |
-
)
|
921 |
-
parser.add_argument(
|
922 |
-
"--validation_epochs",
|
923 |
-
type=int,
|
924 |
-
default=None,
|
925 |
-
help="Run validation every X training epochs. Validation consists of running the validation prompt `args.num_validation_videos` times.",
|
926 |
-
)
|
927 |
-
parser.add_argument(
|
928 |
-
"--validation_steps",
|
929 |
-
type=int,
|
930 |
-
default=None,
|
931 |
-
help="Run validation every X training steps. Validation consists of running the validation prompt `args.num_validation_videos` times.",
|
932 |
-
)
|
933 |
-
parser.add_argument(
|
934 |
-
"--validation_frame_rate",
|
935 |
-
type=int,
|
936 |
-
default=25,
|
937 |
-
help="Frame rate to use for the validation videos.",
|
938 |
-
)
|
939 |
-
parser.add_argument(
|
940 |
-
"--enable_model_cpu_offload",
|
941 |
-
action="store_true",
|
942 |
-
help="Whether or not to enable model-wise CPU offloading when performing validation/testing to save memory.",
|
943 |
-
)
|
944 |
|
945 |
|
946 |
def _add_miscellaneous_arguments(parser: argparse.ArgumentParser) -> None:
|
947 |
-
parser.add_argument("--tracker_name", type=str, default="finetrainers"
|
948 |
-
parser.add_argument(
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
)
|
953 |
-
parser.add_argument(
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
)
|
959 |
-
parser.add_argument(
|
960 |
-
"--hub_model_id",
|
961 |
-
type=str,
|
962 |
-
default=None,
|
963 |
-
help="The name of the repository to keep in sync with the local `output_dir`.",
|
964 |
-
)
|
965 |
-
parser.add_argument(
|
966 |
-
"--output_dir",
|
967 |
-
type=str,
|
968 |
-
default="finetrainers-training",
|
969 |
-
help="The output directory where the model predictions and checkpoints will be written.",
|
970 |
-
)
|
971 |
-
parser.add_argument(
|
972 |
-
"--logging_dir",
|
973 |
-
type=str,
|
974 |
-
default="logs",
|
975 |
-
help="Directory where logs are stored.",
|
976 |
-
)
|
977 |
-
parser.add_argument(
|
978 |
-
"--allow_tf32",
|
979 |
-
action="store_true",
|
980 |
-
help=(
|
981 |
-
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
982 |
-
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
983 |
-
),
|
984 |
-
)
|
985 |
-
parser.add_argument(
|
986 |
-
"--nccl_timeout",
|
987 |
-
type=int,
|
988 |
-
default=600,
|
989 |
-
help="Maximum timeout duration before which allgather, or related, operations fail in multi-GPU/multi-node training settings.",
|
990 |
-
)
|
991 |
-
parser.add_argument(
|
992 |
-
"--report_to",
|
993 |
-
type=str,
|
994 |
-
default="none",
|
995 |
-
choices=["none", "wandb"],
|
996 |
-
help="The integration to report the results and logs to.",
|
997 |
-
)
|
998 |
|
999 |
|
1000 |
def _add_helper_arguments(parser: argparse.ArgumentParser) -> None:
|
1001 |
-
parser.add_argument(
|
1002 |
-
"--list_models",
|
1003 |
-
action="store_true",
|
1004 |
-
help="List all the supported models.",
|
1005 |
-
)
|
1006 |
|
1007 |
|
1008 |
_DTYPE_MAP = {
|
@@ -1014,8 +724,16 @@ _DTYPE_MAP = {
|
|
1014 |
}
|
1015 |
|
1016 |
|
1017 |
-
def _map_to_args_type(args: Dict[str, Any]) ->
|
1018 |
-
result_args =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1019 |
|
1020 |
# Model arguments
|
1021 |
result_args.model_name = args.model_name
|
@@ -1023,6 +741,14 @@ def _map_to_args_type(args: Dict[str, Any]) -> Args:
|
|
1023 |
result_args.revision = args.revision
|
1024 |
result_args.variant = args.variant
|
1025 |
result_args.cache_dir = args.cache_dir
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1026 |
result_args.text_encoder_dtype = _DTYPE_MAP[args.text_encoder_dtype]
|
1027 |
result_args.text_encoder_2_dtype = _DTYPE_MAP[args.text_encoder_2_dtype]
|
1028 |
result_args.text_encoder_3_dtype = _DTYPE_MAP[args.text_encoder_3_dtype]
|
@@ -1033,21 +759,11 @@ def _map_to_args_type(args: Dict[str, Any]) -> Args:
|
|
1033 |
result_args.layerwise_upcasting_skip_modules_pattern = args.layerwise_upcasting_skip_modules_pattern
|
1034 |
|
1035 |
# Dataset arguments
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
result_args.
|
1040 |
-
result_args.
|
1041 |
-
result_args.video_column = args.video_column
|
1042 |
-
result_args.caption_column = args.caption_column
|
1043 |
-
result_args.id_token = args.id_token
|
1044 |
-
result_args.image_resolution_buckets = args.image_resolution_buckets or DEFAULT_IMAGE_RESOLUTION_BUCKETS
|
1045 |
-
result_args.video_resolution_buckets = args.video_resolution_buckets or DEFAULT_VIDEO_RESOLUTION_BUCKETS
|
1046 |
-
result_args.video_reshape_mode = args.video_reshape_mode
|
1047 |
-
result_args.caption_dropout_p = args.caption_dropout_p
|
1048 |
-
result_args.caption_dropout_technique = args.caption_dropout_technique
|
1049 |
-
result_args.precompute_conditions = args.precompute_conditions
|
1050 |
-
result_args.remove_common_llm_caption_prefixes = args.remove_common_llm_caption_prefixes
|
1051 |
|
1052 |
# Dataloader arguments
|
1053 |
result_args.dataloader_num_workers = args.dataloader_num_workers
|
@@ -1069,11 +785,8 @@ def _map_to_args_type(args: Dict[str, Any]) -> Args:
|
|
1069 |
result_args.training_type = args.training_type
|
1070 |
result_args.seed = args.seed
|
1071 |
result_args.batch_size = args.batch_size
|
1072 |
-
result_args.train_epochs = args.train_epochs
|
1073 |
result_args.train_steps = args.train_steps
|
1074 |
-
result_args.
|
1075 |
-
result_args.lora_alpha = args.lora_alpha
|
1076 |
-
result_args.target_modules = args.target_modules
|
1077 |
result_args.gradient_accumulation_steps = args.gradient_accumulation_steps
|
1078 |
result_args.gradient_checkpointing = args.gradient_checkpointing
|
1079 |
result_args.checkpointing_steps = args.checkpointing_steps
|
@@ -1084,9 +797,7 @@ def _map_to_args_type(args: Dict[str, Any]) -> Args:
|
|
1084 |
|
1085 |
# Optimizer arguments
|
1086 |
result_args.optimizer = args.optimizer or "adamw"
|
1087 |
-
result_args.use_8bit_bnb = args.use_8bit_bnb
|
1088 |
result_args.lr = args.lr or 1e-4
|
1089 |
-
result_args.scale_lr = args.scale_lr
|
1090 |
result_args.lr_scheduler = args.lr_scheduler
|
1091 |
result_args.lr_warmup_steps = args.lr_warmup_steps
|
1092 |
result_args.lr_num_cycles = args.lr_num_cycles
|
@@ -1099,42 +810,9 @@ def _map_to_args_type(args: Dict[str, Any]) -> Args:
|
|
1099 |
result_args.max_grad_norm = args.max_grad_norm
|
1100 |
|
1101 |
# Validation arguments
|
1102 |
-
|
1103 |
-
|
1104 |
-
validation_videos = args.validation_videos.split(args.validation_separator) if args.validation_videos else None
|
1105 |
-
stripped_validation_prompts = []
|
1106 |
-
validation_heights = []
|
1107 |
-
validation_widths = []
|
1108 |
-
validation_num_frames = []
|
1109 |
-
for prompt in validation_prompts:
|
1110 |
-
prompt: str
|
1111 |
-
prompt = prompt.strip()
|
1112 |
-
actual_prompt, separator, resolution = prompt.rpartition("@@@")
|
1113 |
-
stripped_validation_prompts.append(actual_prompt)
|
1114 |
-
num_frames, height, width = None, None, None
|
1115 |
-
if len(resolution) > 0:
|
1116 |
-
num_frames, height, width = map(int, resolution.split("x"))
|
1117 |
-
validation_num_frames.append(num_frames)
|
1118 |
-
validation_heights.append(height)
|
1119 |
-
validation_widths.append(width)
|
1120 |
-
|
1121 |
-
if validation_images is None:
|
1122 |
-
validation_images = [None] * len(validation_prompts)
|
1123 |
-
if validation_videos is None:
|
1124 |
-
validation_videos = [None] * len(validation_prompts)
|
1125 |
-
|
1126 |
-
result_args.validation_prompts = stripped_validation_prompts
|
1127 |
-
result_args.validation_heights = validation_heights
|
1128 |
-
result_args.validation_widths = validation_widths
|
1129 |
-
result_args.validation_num_frames = validation_num_frames
|
1130 |
-
result_args.validation_images = validation_images
|
1131 |
-
result_args.validation_videos = validation_videos
|
1132 |
-
|
1133 |
-
result_args.num_validation_videos_per_prompt = args.num_validation_videos
|
1134 |
-
result_args.validation_every_n_epochs = args.validation_epochs
|
1135 |
-
result_args.validation_every_n_steps = args.validation_steps
|
1136 |
result_args.enable_model_cpu_offload = args.enable_model_cpu_offload
|
1137 |
-
result_args.validation_frame_rate = args.validation_frame_rate
|
1138 |
|
1139 |
# Miscellaneous arguments
|
1140 |
result_args.tracker_name = args.tracker_name
|
@@ -1143,45 +821,36 @@ def _map_to_args_type(args: Dict[str, Any]) -> Args:
|
|
1143 |
result_args.hub_model_id = args.hub_model_id
|
1144 |
result_args.output_dir = args.output_dir
|
1145 |
result_args.logging_dir = args.logging_dir
|
|
|
1146 |
result_args.allow_tf32 = args.allow_tf32
|
|
|
1147 |
result_args.nccl_timeout = args.nccl_timeout
|
1148 |
result_args.report_to = args.report_to
|
|
|
1149 |
|
1150 |
return result_args
|
1151 |
|
1152 |
|
1153 |
-
def
|
1154 |
if args.training_type == "full-finetune":
|
1155 |
assert (
|
1156 |
"transformer" not in args.layerwise_upcasting_modules
|
1157 |
), "Layerwise upcasting is not supported for full-finetune training"
|
1158 |
|
1159 |
|
1160 |
-
def
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
1164 |
-
|
1165 |
-
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
|
1171 |
-
if args.
|
1172 |
-
|
1173 |
-
args.validation_prompts
|
1174 |
-
), "Validation images and prompts should be of same length"
|
1175 |
-
if args.validation_videos is not None:
|
1176 |
-
assert len(args.validation_videos) == len(
|
1177 |
-
args.validation_prompts
|
1178 |
-
), "Validation videos and prompts should be of same length"
|
1179 |
-
assert len(args.validation_prompts) == len(
|
1180 |
-
args.validation_heights
|
1181 |
-
), "Validation prompts and heights should be of same length"
|
1182 |
-
assert len(args.validation_prompts) == len(
|
1183 |
-
args.validation_widths
|
1184 |
-
), "Validation prompts and widths should be of same length"
|
1185 |
|
1186 |
|
1187 |
def _display_helper_messages(args: argparse.Namespace):
|
|
|
1 |
import argparse
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
import sys
|
5 |
+
from typing import Any, Callable, Dict, List, Optional
|
6 |
|
7 |
import torch
|
8 |
|
9 |
+
from .config import SUPPORTED_MODEL_CONFIGS, ModelType, TrainingType
|
10 |
+
from .logging import get_logger
|
11 |
+
from .parallel import ParallelBackendEnum
|
12 |
+
from .utils import get_non_null_items
|
13 |
|
14 |
|
15 |
+
logger = get_logger()
|
16 |
+
|
17 |
+
|
18 |
+
class BaseArgs:
|
19 |
r"""
|
20 |
The arguments for the finetrainers training script.
|
21 |
|
|
|
26 |
TODO(aryan): add `python train.py --memory_requirements --model_name <model_name>` to show
|
27 |
memory requirements per model, per training type with sensible training settings.
|
28 |
|
29 |
+
PARALLEL ARGUMENTS
|
30 |
+
------------------
|
31 |
+
parallel_backend (`str`, defaults to `accelerate`):
|
32 |
+
The parallel backend to use for training. Choose between ['accelerate', 'ptd'].
|
33 |
+
pp_degree (`int`, defaults to `1`):
|
34 |
+
The degree of pipeline parallelism.
|
35 |
+
dp_degree (`int`, defaults to `1`):
|
36 |
+
The degree of data parallelism (number of model replicas).
|
37 |
+
dp_shards (`int`, defaults to `-1`):
|
38 |
+
The number of data parallel shards (number of model partitions).
|
39 |
+
cp_degree (`int`, defaults to `1`):
|
40 |
+
The degree of context parallelism.
|
41 |
+
|
42 |
MODEL ARGUMENTS
|
43 |
---------------
|
44 |
model_name (`str`):
|
|
|
53 |
storage requirements.
|
54 |
cache_dir (`str`, defaults to `None`):
|
55 |
The directory where the downloaded models and datasets will be stored, or loaded from.
|
56 |
+
tokenizer_id (`str`, defaults to `None`):
|
57 |
+
Identifier for the tokenizer model. This is useful when using a different tokenizer than the default from `pretrained_model_name_or_path`.
|
58 |
+
tokenizer_2_id (`str`, defaults to `None`):
|
59 |
+
Identifier for the second tokenizer model. This is useful when using a different tokenizer than the default from `pretrained_model_name_or_path`.
|
60 |
+
tokenizer_3_id (`str`, defaults to `None`):
|
61 |
+
Identifier for the third tokenizer model. This is useful when using a different tokenizer than the default from `pretrained_model_name_or_path`.
|
62 |
+
text_encoder_id (`str`, defaults to `None`):
|
63 |
+
Identifier for the text encoder model. This is useful when using a different text encoder than the default from `pretrained_model_name_or_path`.
|
64 |
+
text_encoder_2_id (`str`, defaults to `None`):
|
65 |
+
Identifier for the second text encoder model. This is useful when using a different text encoder than the default from `pretrained_model_name_or_path`.
|
66 |
+
text_encoder_3_id (`str`, defaults to `None`):
|
67 |
+
Identifier for the third text encoder model. This is useful when using a different text encoder than the default from `pretrained_model_name_or_path`.
|
68 |
+
transformer_id (`str`, defaults to `None`):
|
69 |
+
Identifier for the transformer model. This is useful when using a different transformer model than the default from `pretrained_model_name_or_path`.
|
70 |
+
vae_id (`str`, defaults to `None`):
|
71 |
+
Identifier for the VAE model. This is useful when using a different VAE model than the default from `pretrained_model_name_or_path`.
|
72 |
text_encoder_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
|
73 |
Data type for the text encoder when generating text embeddings.
|
74 |
text_encoder_2_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
|
|
|
90 |
|
91 |
DATASET ARGUMENTS
|
92 |
-----------------
|
93 |
+
dataset_config (`str`):
|
94 |
+
File to a dataset file containing information about training data. This file can contain information about one or
|
95 |
+
more datasets in JSON format. The file must have a key called "datasets", which is a list of dictionaries. Each
|
96 |
+
dictionary must contain the following keys:
|
97 |
+
- "data_root": (`str`)
|
98 |
+
The root directory containing the dataset. This parameter must be provided if `dataset_file` is not provided.
|
99 |
+
- "dataset_file": (`str`)
|
100 |
+
Path to a CSV/JSON/JSONL/PARQUET/ARROW/HF_HUB_DATASET file containing metadata for training. This parameter
|
101 |
+
must be provided if `data_root` is not provided.
|
102 |
+
- "dataset_type": (`str`)
|
103 |
+
Type of dataset. Choose between ['image', 'video'].
|
104 |
+
- "id_token": (`str`)
|
105 |
+
Identifier token appended to the start of each prompt if provided. This is useful for LoRA-type training
|
106 |
+
for single subject/concept/style training, but is not necessary.
|
107 |
+
- "image_resolution_buckets": (`List[Tuple[int, int]]`)
|
108 |
+
Resolution buckets for image. This should be a list of tuples containing 2 values, where each tuple
|
109 |
+
represents the resolution (height, width). All images will be resized to the nearest bucket resolution.
|
110 |
+
This parameter must be provided if `dataset_type` is 'image'.
|
111 |
+
- "video_resolution_buckets": (`List[Tuple[int, int, int]]`)
|
112 |
+
Resolution buckets for video. This should be a list of tuples containing 3 values, where each tuple
|
113 |
+
represents the resolution (num_frames, height, width). All videos will be resized to the nearest bucket
|
114 |
+
resolution. This parameter must be provided if `dataset_type` is 'video'.
|
115 |
+
- "reshape_mode": (`str`)
|
116 |
+
All input images/videos are reshaped using this mode. Choose between the following:
|
117 |
+
["center_crop", "random_crop", "bicubic"].
|
118 |
+
- "remove_common_llm_caption_prefixes": (`boolean`)
|
119 |
+
Whether or not to remove common LLM caption prefixes. See `~constants.py` for the list of common prefixes.
|
120 |
+
dataset_shuffle_buffer_size (`int`, defaults to `1`):
|
121 |
+
The buffer size for shuffling the dataset. This is useful for shuffling the dataset before training. The default
|
122 |
+
value of `1` means that the dataset will not be shuffled.
|
123 |
+
precomputation_items (`int`, defaults to `512`):
|
124 |
+
Number of data samples to precompute at once for memory-efficient training. The higher this value,
|
125 |
+
the more disk memory will be used to save the precomputed samples (conditions and latents).
|
126 |
+
precomputation_dir (`str`, defaults to `None`):
|
127 |
+
The directory where the precomputed samples will be stored. If not provided, the precomputed samples
|
128 |
+
will be stored in a temporary directory of the output directory.
|
129 |
+
precomputation_once (`bool`, defaults to `False`):
|
130 |
+
Precompute embeddings from all datasets at once before training. This is useful to save time during training
|
131 |
+
with smaller datasets. If set to `False`, will save disk space by precomputing embeddings on-the-fly during
|
132 |
+
training when required. Make sure to set `precomputation_items` to a reasonable value in line with the size
|
133 |
+
of your dataset(s).
|
134 |
|
135 |
DATALOADER_ARGUMENTS
|
136 |
--------------------
|
|
|
178 |
A seed for reproducible training.
|
179 |
batch_size (`int`, defaults to `1`):
|
180 |
Per-device batch size.
|
181 |
+
train_steps (`int`, defaults to `1000`):
|
182 |
+
Total number of training steps to perform.
|
183 |
+
max_data_samples (`int`, defaults to `2**64`):
|
184 |
+
Maximum number of data samples observed during training training. If lesser than that required by `train_steps`,
|
185 |
+
the training will stop early.
|
|
|
|
|
|
|
|
|
|
|
186 |
gradient_accumulation_steps (`int`, defaults to `1`):
|
187 |
Number of gradients steps to accumulate before performing an optimizer step.
|
188 |
gradient_checkpointing (`bool`, defaults to `False`):
|
|
|
201 |
OPTIMIZER ARGUMENTS
|
202 |
-------------------
|
203 |
optimizer (`str`, defaults to `adamw`):
|
204 |
+
The optimizer type to use. Choose between the following:
|
205 |
+
- Torch optimizers: ["adam", "adamw"]
|
206 |
+
- Bitsandbytes optimizers: ["adam-bnb", "adamw-bnb", "adam-bnb-8bit", "adamw-bnb-8bit"]
|
207 |
lr (`float`, defaults to `1e-4`):
|
208 |
Initial learning rate (after the potential warmup period) to use.
|
|
|
|
|
209 |
lr_scheduler (`str`, defaults to `cosine_with_restarts`):
|
210 |
The scheduler type to use. Choose between ['linear', 'cosine', 'cosine_with_restarts', 'polynomial',
|
211 |
'constant', 'constant_with_warmup'].
|
|
|
227 |
|
228 |
VALIDATION ARGUMENTS
|
229 |
--------------------
|
230 |
+
validation_dataset_file (`str`, defaults to `None`):
|
231 |
+
Path to a CSV/JSON/PARQUET/ARROW file containing information for validation. The file must contain atleast the
|
232 |
+
"caption" column. Other columns such as "image_path" and "video_path" can be provided too. If provided, "image_path"
|
233 |
+
will be used to load a PIL.Image.Image and set the "image" key in the sample dictionary. Similarly, "video_path"
|
234 |
+
will be used to load a List[PIL.Image.Image] and set the "video" key in the sample dictionary.
|
235 |
+
The validation dataset file may contain other attributes specific to inference/validation such as:
|
236 |
+
- "height" and "width" and "num_frames": Resolution
|
237 |
+
- "num_inference_steps": Number of inference steps
|
238 |
+
- "guidance_scale": Classifier-free Guidance Scale
|
239 |
+
- ... (any number of additional attributes can be provided. The ModelSpecification::validate method will be
|
240 |
+
invoked with the sample dictionary to validate the sample.)
|
241 |
+
validation_steps (`int`, defaults to `500`):
|
242 |
+
Number of training steps after which a validation step is performed.
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
enable_model_cpu_offload (`bool`, defaults to `False`):
|
244 |
Whether or not to offload different modeling components to CPU during validation.
|
|
|
|
|
245 |
|
246 |
MISCELLANEOUS ARGUMENTS
|
247 |
-----------------------
|
|
|
257 |
The directory where the model checkpoints and logs will be stored.
|
258 |
logging_dir (`str`, defaults to `logs`):
|
259 |
The directory where the logs will be stored.
|
260 |
+
logging_steps (`int`, defaults to `1`):
|
261 |
+
Training logs will be tracked every `logging_steps` steps.
|
262 |
allow_tf32 (`bool`, defaults to `False`):
|
263 |
Whether or not to allow the use of TF32 matmul on compatible hardware.
|
264 |
nccl_timeout (`int`, defaults to `1800`):
|
265 |
Timeout for the NCCL communication.
|
266 |
report_to (`str`, defaults to `wandb`):
|
267 |
The name of the logger to use for logging training metrics. Choose between ['wandb'].
|
268 |
+
verbose (`int`, defaults to `1`):
|
269 |
+
Whether or not to print verbose logs.
|
270 |
+
- 0: Diffusers/Transformers warning logging on local main process only
|
271 |
+
- 1: Diffusers/Transformers info logging on local main process only
|
272 |
+
- 2: Diffusers/Transformers debug logging on local main process only
|
273 |
+
- 3: Diffusers/Transformers debug logging on all processes
|
274 |
"""
|
275 |
|
276 |
+
# Parallel arguments
|
277 |
+
parallel_backend = ParallelBackendEnum.ACCELERATE
|
278 |
+
pp_degree: int = 1
|
279 |
+
dp_degree: int = 1
|
280 |
+
dp_shards: int = 1
|
281 |
+
cp_degree: int = 1
|
282 |
+
tp_degree: int = 1
|
283 |
+
|
284 |
# Model arguments
|
285 |
model_name: str = None
|
286 |
pretrained_model_name_or_path: str = None
|
287 |
revision: Optional[str] = None
|
288 |
variant: Optional[str] = None
|
289 |
cache_dir: Optional[str] = None
|
290 |
+
tokenizer_id: Optional[str] = None
|
291 |
+
tokenizer_2_id: Optional[str] = None
|
292 |
+
tokenizer_3_id: Optional[str] = None
|
293 |
+
text_encoder_id: Optional[str] = None
|
294 |
+
text_encoder_2_id: Optional[str] = None
|
295 |
+
text_encoder_3_id: Optional[str] = None
|
296 |
+
transformer_id: Optional[str] = None
|
297 |
+
vae_id: Optional[str] = None
|
298 |
text_encoder_dtype: torch.dtype = torch.bfloat16
|
299 |
text_encoder_2_dtype: torch.dtype = torch.bfloat16
|
300 |
text_encoder_3_dtype: torch.dtype = torch.bfloat16
|
|
|
314 |
]
|
315 |
|
316 |
# Dataset arguments
|
317 |
+
dataset_config: str = None
|
318 |
+
dataset_shuffle_buffer_size: int = 1
|
319 |
+
precomputation_items: int = 512
|
320 |
+
precomputation_dir: Optional[str] = None
|
321 |
+
precomputation_once: bool = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
# Dataloader arguments
|
324 |
dataloader_num_workers: int = 0
|
|
|
340 |
training_type: str = None
|
341 |
seed: int = 42
|
342 |
batch_size: int = 1
|
343 |
+
train_steps: int = 1000
|
344 |
+
max_data_samples: int = 2**64
|
|
|
|
|
|
|
345 |
gradient_accumulation_steps: int = 1
|
346 |
gradient_checkpointing: bool = False
|
347 |
checkpointing_steps: int = 500
|
|
|
352 |
|
353 |
# Optimizer arguments
|
354 |
optimizer: str = "adamw"
|
|
|
355 |
lr: float = 1e-4
|
|
|
356 |
lr_scheduler: str = "cosine_with_restarts"
|
357 |
lr_warmup_steps: int = 0
|
358 |
lr_num_cycles: int = 1
|
|
|
365 |
max_grad_norm: float = 1.0
|
366 |
|
367 |
# Validation arguments
|
368 |
+
validation_dataset_file: Optional[str] = None
|
369 |
+
validation_steps: int = 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
enable_model_cpu_offload: bool = False
|
|
|
371 |
|
372 |
# Miscellaneous arguments
|
373 |
tracker_name: str = "finetrainers"
|
|
|
376 |
hub_model_id: Optional[str] = None
|
377 |
output_dir: str = None
|
378 |
logging_dir: Optional[str] = "logs"
|
379 |
+
logging_steps: int = 1
|
380 |
allow_tf32: bool = False
|
381 |
+
init_timeout: int = 300 # 5 minutes
|
382 |
+
nccl_timeout: int = 600 # 10 minutes, considering that validation may be performed
|
383 |
report_to: str = "wandb"
|
384 |
+
verbose: int = 1
|
385 |
|
386 |
def to_dict(self) -> Dict[str, Any]:
|
387 |
+
parallel_arguments = {
|
388 |
+
"pp_degree": self.pp_degree,
|
389 |
+
"dp_degree": self.dp_degree,
|
390 |
+
"dp_shards": self.dp_shards,
|
391 |
+
"cp_degree": self.cp_degree,
|
392 |
+
"tp_degree": self.tp_degree,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
}
|
394 |
|
395 |
+
model_arguments = {
|
396 |
+
"model_name": self.model_name,
|
397 |
+
"pretrained_model_name_or_path": self.pretrained_model_name_or_path,
|
398 |
+
"revision": self.revision,
|
399 |
+
"variant": self.variant,
|
400 |
+
"cache_dir": self.cache_dir,
|
401 |
+
"tokenizer_id": self.tokenizer_id,
|
402 |
+
"tokenizer_2_id": self.tokenizer_2_id,
|
403 |
+
"tokenizer_3_id": self.tokenizer_3_id,
|
404 |
+
"text_encoder_id": self.text_encoder_id,
|
405 |
+
"text_encoder_2_id": self.text_encoder_2_id,
|
406 |
+
"text_encoder_3_id": self.text_encoder_3_id,
|
407 |
+
"transformer_id": self.transformer_id,
|
408 |
+
"vae_id": self.vae_id,
|
409 |
+
"text_encoder_dtype": self.text_encoder_dtype,
|
410 |
+
"text_encoder_2_dtype": self.text_encoder_2_dtype,
|
411 |
+
"text_encoder_3_dtype": self.text_encoder_3_dtype,
|
412 |
+
"transformer_dtype": self.transformer_dtype,
|
413 |
+
"vae_dtype": self.vae_dtype,
|
414 |
+
"layerwise_upcasting_modules": self.layerwise_upcasting_modules,
|
415 |
+
"layerwise_upcasting_storage_dtype": self.layerwise_upcasting_storage_dtype,
|
416 |
+
"layerwise_upcasting_skip_modules_pattern": self.layerwise_upcasting_skip_modules_pattern,
|
417 |
+
}
|
418 |
+
model_arguments = get_non_null_items(model_arguments)
|
419 |
+
|
420 |
+
dataset_arguments = {
|
421 |
+
"dataset_config": self.dataset_config,
|
422 |
+
"dataset_shuffle_buffer_size": self.dataset_shuffle_buffer_size,
|
423 |
+
"precomputation_items": self.precomputation_items,
|
424 |
+
"precomputation_dir": self.precomputation_dir,
|
425 |
+
"precomputation_once": self.precomputation_once,
|
426 |
+
}
|
427 |
+
dataset_arguments = get_non_null_items(dataset_arguments)
|
428 |
|
429 |
+
dataloader_arguments = {
|
430 |
+
"dataloader_num_workers": self.dataloader_num_workers,
|
431 |
+
"pin_memory": self.pin_memory,
|
432 |
+
}
|
|
|
|
|
433 |
|
434 |
+
diffusion_arguments = {
|
435 |
+
"flow_resolution_shifting": self.flow_resolution_shifting,
|
436 |
+
"flow_base_seq_len": self.flow_base_seq_len,
|
437 |
+
"flow_max_seq_len": self.flow_max_seq_len,
|
438 |
+
"flow_base_shift": self.flow_base_shift,
|
439 |
+
"flow_max_shift": self.flow_max_shift,
|
440 |
+
"flow_shift": self.flow_shift,
|
441 |
+
"flow_weighting_scheme": self.flow_weighting_scheme,
|
442 |
+
"flow_logit_mean": self.flow_logit_mean,
|
443 |
+
"flow_logit_std": self.flow_logit_std,
|
444 |
+
"flow_mode_scale": self.flow_mode_scale,
|
445 |
+
}
|
446 |
|
447 |
+
training_arguments = {
|
448 |
+
"training_type": self.training_type,
|
449 |
+
"seed": self.seed,
|
450 |
+
"batch_size": self.batch_size,
|
451 |
+
"train_steps": self.train_steps,
|
452 |
+
"max_data_samples": self.max_data_samples,
|
453 |
+
"gradient_accumulation_steps": self.gradient_accumulation_steps,
|
454 |
+
"gradient_checkpointing": self.gradient_checkpointing,
|
455 |
+
"checkpointing_steps": self.checkpointing_steps,
|
456 |
+
"checkpointing_limit": self.checkpointing_limit,
|
457 |
+
"resume_from_checkpoint": self.resume_from_checkpoint,
|
458 |
+
"enable_slicing": self.enable_slicing,
|
459 |
+
"enable_tiling": self.enable_tiling,
|
460 |
+
}
|
461 |
+
training_arguments = get_non_null_items(training_arguments)
|
462 |
+
|
463 |
+
optimizer_arguments = {
|
464 |
+
"optimizer": self.optimizer,
|
465 |
+
"lr": self.lr,
|
466 |
+
"lr_scheduler": self.lr_scheduler,
|
467 |
+
"lr_warmup_steps": self.lr_warmup_steps,
|
468 |
+
"lr_num_cycles": self.lr_num_cycles,
|
469 |
+
"lr_power": self.lr_power,
|
470 |
+
"beta1": self.beta1,
|
471 |
+
"beta2": self.beta2,
|
472 |
+
"beta3": self.beta3,
|
473 |
+
"weight_decay": self.weight_decay,
|
474 |
+
"epsilon": self.epsilon,
|
475 |
+
"max_grad_norm": self.max_grad_norm,
|
476 |
+
}
|
477 |
+
optimizer_arguments = get_non_null_items(optimizer_arguments)
|
478 |
|
479 |
+
validation_arguments = {
|
480 |
+
"validation_dataset_file": self.validation_dataset_file,
|
481 |
+
"validation_steps": self.validation_steps,
|
482 |
+
"enable_model_cpu_offload": self.enable_model_cpu_offload,
|
483 |
+
}
|
484 |
+
validation_arguments = get_non_null_items(validation_arguments)
|
485 |
+
|
486 |
+
miscellaneous_arguments = {
|
487 |
+
"tracker_name": self.tracker_name,
|
488 |
+
"push_to_hub": self.push_to_hub,
|
489 |
+
"hub_token": self.hub_token,
|
490 |
+
"hub_model_id": self.hub_model_id,
|
491 |
+
"output_dir": self.output_dir,
|
492 |
+
"logging_dir": self.logging_dir,
|
493 |
+
"logging_steps": self.logging_steps,
|
494 |
+
"allow_tf32": self.allow_tf32,
|
495 |
+
"init_timeout": self.init_timeout,
|
496 |
+
"nccl_timeout": self.nccl_timeout,
|
497 |
+
"report_to": self.report_to,
|
498 |
+
"verbose": self.verbose,
|
499 |
+
}
|
500 |
+
miscellaneous_arguments = get_non_null_items(miscellaneous_arguments)
|
501 |
|
502 |
+
return {
|
503 |
+
"parallel_arguments": parallel_arguments,
|
504 |
+
"model_arguments": model_arguments,
|
505 |
+
"dataset_arguments": dataset_arguments,
|
506 |
+
"dataloader_arguments": dataloader_arguments,
|
507 |
+
"diffusion_arguments": diffusion_arguments,
|
508 |
+
"training_arguments": training_arguments,
|
509 |
+
"optimizer_arguments": optimizer_arguments,
|
510 |
+
"validation_arguments": validation_arguments,
|
511 |
+
"miscellaneous_arguments": miscellaneous_arguments,
|
512 |
+
}
|
513 |
|
514 |
+
def extend_args(
|
515 |
+
self,
|
516 |
+
add_fn: Callable[[argparse.ArgumentParser], None],
|
517 |
+
map_fn: Callable[["BaseArgs"], None],
|
518 |
+
validate_fn: Callable[["BaseArgs"], None],
|
519 |
+
) -> None:
|
520 |
+
if not hasattr(self, "_extended_add_arguments"):
|
521 |
+
self._extended_add_arguments = []
|
522 |
+
self._extended_add_arguments.append((add_fn, validate_fn, map_fn))
|
523 |
+
|
524 |
+
def parse_args(self):
|
525 |
+
_LIST_MODELS = "--list_models"
|
526 |
+
|
527 |
+
parser = argparse.ArgumentParser()
|
528 |
+
|
529 |
+
special_args = [_LIST_MODELS]
|
530 |
+
if any(arg in sys.argv for arg in special_args):
|
531 |
+
_add_helper_arguments(parser)
|
532 |
+
args = parser.parse_args()
|
533 |
+
_display_helper_messages(args)
|
534 |
+
sys.exit(0)
|
535 |
+
else:
|
536 |
+
_add_args(parser)
|
537 |
+
for extended_add_arg_fns in getattr(self, "_extended_add_arguments", []):
|
538 |
+
add_fn, _, _ = extended_add_arg_fns
|
539 |
+
add_fn(parser)
|
540 |
+
|
541 |
+
args, remaining_args = parser.parse_known_args()
|
542 |
+
logger.debug(f"Remaining unparsed arguments: {remaining_args}")
|
543 |
+
|
544 |
+
mapped_args = _map_to_args_type(args)
|
545 |
+
for extended_add_arg_fns in getattr(self, "_extended_add_arguments", []):
|
546 |
+
_, _, map_fn = extended_add_arg_fns
|
547 |
+
map_fn(args, mapped_args)
|
548 |
+
|
549 |
+
_validate_args(mapped_args)
|
550 |
+
for extended_add_arg_fns in getattr(self, "_extended_add_arguments", []):
|
551 |
+
_, validate_fn, _ = extended_add_arg_fns
|
552 |
+
validate_fn(mapped_args)
|
553 |
+
|
554 |
+
return mapped_args
|
555 |
+
|
556 |
+
|
557 |
+
def _add_args(parser: argparse.ArgumentParser) -> None:
|
558 |
+
_add_parallel_arguments(parser)
|
559 |
+
_add_model_arguments(parser)
|
560 |
+
_add_dataset_arguments(parser)
|
561 |
+
_add_dataloader_arguments(parser)
|
562 |
+
_add_diffusion_arguments(parser)
|
563 |
+
_add_training_arguments(parser)
|
564 |
+
_add_optimizer_arguments(parser)
|
565 |
+
_add_validation_arguments(parser)
|
566 |
+
_add_miscellaneous_arguments(parser)
|
567 |
+
|
568 |
+
|
569 |
+
def _validate_args(args: BaseArgs):
|
570 |
+
_validate_model_args(args)
|
571 |
+
_validate_dataset_args(args)
|
572 |
_validate_validation_args(args)
|
573 |
|
574 |
|
575 |
+
def _add_parallel_arguments(parser: argparse.ArgumentParser) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
parser.add_argument(
|
577 |
+
"--parallel_backend",
|
578 |
type=str,
|
579 |
+
default=ParallelBackendEnum.ACCELERATE,
|
580 |
+
choices=[ParallelBackendEnum.ACCELERATE, ParallelBackendEnum.PTD],
|
|
|
581 |
)
|
582 |
+
parser.add_argument("--pp_degree", type=int, default=1)
|
583 |
+
parser.add_argument("--dp_degree", type=int, default=1)
|
584 |
+
parser.add_argument("--dp_shards", type=int, default=1)
|
585 |
+
parser.add_argument("--cp_degree", type=int, default=1)
|
586 |
+
parser.add_argument("--tp_degree", type=int, default=1)
|
587 |
+
|
588 |
+
|
589 |
+
def _add_model_arguments(parser: argparse.ArgumentParser) -> None:
|
590 |
parser.add_argument(
|
591 |
+
"--model_name", type=str, required=True, choices=[x.value for x in ModelType.__members__.values()]
|
592 |
+
)
|
593 |
+
parser.add_argument("--pretrained_model_name_or_path", type=str, required=True)
|
594 |
+
parser.add_argument("--revision", type=str, default=None, required=False)
|
595 |
+
parser.add_argument("--variant", type=str, default=None)
|
596 |
+
parser.add_argument("--cache_dir", type=str, default=None)
|
597 |
+
parser.add_argument("--tokenizer_id", type=str, default=None)
|
598 |
+
parser.add_argument("--tokenizer_2_id", type=str, default=None)
|
599 |
+
parser.add_argument("--tokenizer_3_id", type=str, default=None)
|
600 |
+
parser.add_argument("--text_encoder_id", type=str, default=None)
|
601 |
+
parser.add_argument("--text_encoder_2_id", type=str, default=None)
|
602 |
+
parser.add_argument("--text_encoder_3_id", type=str, default=None)
|
603 |
+
parser.add_argument("--transformer_id", type=str, default=None)
|
604 |
+
parser.add_argument("--vae_id", type=str, default=None)
|
605 |
+
parser.add_argument("--text_encoder_dtype", type=str, default="bf16")
|
606 |
+
parser.add_argument("--text_encoder_2_dtype", type=str, default="bf16")
|
607 |
+
parser.add_argument("--text_encoder_3_dtype", type=str, default="bf16")
|
608 |
+
parser.add_argument("--transformer_dtype", type=str, default="bf16")
|
609 |
+
parser.add_argument("--vae_dtype", type=str, default="bf16")
|
610 |
+
parser.add_argument("--layerwise_upcasting_modules", type=str, default=[], nargs="+", choices=["transformer"])
|
|
|
|
|
|
|
|
|
611 |
parser.add_argument(
|
612 |
"--layerwise_upcasting_storage_dtype",
|
613 |
type=str,
|
614 |
default="float8_e4m3fn",
|
615 |
choices=["float8_e4m3fn", "float8_e5m2"],
|
|
|
616 |
)
|
617 |
parser.add_argument(
|
618 |
"--layerwise_upcasting_skip_modules_pattern",
|
619 |
type=str,
|
620 |
default=["patch_embed", "pos_embed", "x_embedder", "context_embedder", "^proj_in$", "^proj_out$", "norm"],
|
621 |
nargs="+",
|
|
|
622 |
)
|
623 |
|
624 |
|
625 |
def _add_dataset_arguments(parser: argparse.ArgumentParser) -> None:
|
626 |
+
parser.add_argument("--dataset_config", type=str, required=True)
|
627 |
+
parser.add_argument("--dataset_shuffle_buffer_size", type=int, default=1)
|
628 |
+
parser.add_argument("--precomputation_items", type=int, default=512)
|
629 |
+
parser.add_argument("--precomputation_dir", type=str, default=None)
|
630 |
+
parser.add_argument("--precomputation_once", action="store_true")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
631 |
|
632 |
|
633 |
def _add_dataloader_arguments(parser: argparse.ArgumentParser) -> None:
|
634 |
+
parser.add_argument("--dataloader_num_workers", type=int, default=0)
|
635 |
+
parser.add_argument("--pin_memory", action="store_true")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
636 |
|
637 |
|
638 |
def _add_diffusion_arguments(parser: argparse.ArgumentParser) -> None:
|
639 |
+
parser.add_argument("--flow_resolution_shifting", action="store_true")
|
640 |
+
parser.add_argument("--flow_base_seq_len", type=int, default=256)
|
641 |
+
parser.add_argument("--flow_max_seq_len", type=int, default=4096)
|
642 |
+
parser.add_argument("--flow_base_shift", type=float, default=0.5)
|
643 |
+
parser.add_argument("--flow_max_shift", type=float, default=1.15)
|
644 |
+
parser.add_argument("--flow_shift", type=float, default=1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
645 |
parser.add_argument(
|
646 |
"--flow_weighting_scheme",
|
647 |
type=str,
|
648 |
default="none",
|
649 |
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
650 |
)
|
651 |
+
parser.add_argument("--flow_logit_mean", type=float, default=0.0)
|
652 |
+
parser.add_argument("--flow_logit_std", type=float, default=1.0)
|
653 |
+
parser.add_argument("--flow_mode_scale", type=float, default=1.29)
|
654 |
|
655 |
|
656 |
def _add_training_arguments(parser: argparse.ArgumentParser) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
657 |
parser.add_argument(
|
658 |
+
"--training_type", type=str, choices=[x.value for x in TrainingType.__members__.values()], required=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
659 |
)
|
660 |
+
parser.add_argument("--seed", type=int, default=None)
|
661 |
+
parser.add_argument("--batch_size", type=int, default=1)
|
662 |
+
parser.add_argument("--train_steps", type=int, default=1000)
|
663 |
+
parser.add_argument("--max_data_samples", type=int, default=2**64)
|
664 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
665 |
+
parser.add_argument("--gradient_checkpointing", action="store_true")
|
666 |
+
parser.add_argument("--checkpointing_steps", type=int, default=500)
|
667 |
+
parser.add_argument("--checkpointing_limit", type=int, default=None)
|
668 |
+
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
|
669 |
+
parser.add_argument("--enable_slicing", action="store_true")
|
670 |
+
parser.add_argument("--enable_tiling", action="store_true")
|
671 |
|
672 |
|
673 |
def _add_optimizer_arguments(parser: argparse.ArgumentParser) -> None:
|
674 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
675 |
+
parser.add_argument("--lr_scheduler", type=str, default="constant")
|
676 |
+
parser.add_argument("--lr_warmup_steps", type=int, default=500)
|
677 |
+
parser.add_argument("--lr_num_cycles", type=int, default=1)
|
678 |
+
parser.add_argument("--lr_power", type=float, default=1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
679 |
parser.add_argument(
|
680 |
"--optimizer",
|
681 |
type=lambda s: s.lower(),
|
682 |
default="adam",
|
683 |
+
choices=["adam", "adamw", "adam-bnb", "adamw-bnb", "adam-bnb-8bit", "adamw-bnb-8bit"],
|
|
|
684 |
)
|
685 |
+
parser.add_argument("--beta1", type=float, default=0.9)
|
686 |
+
parser.add_argument("--beta2", type=float, default=0.95)
|
687 |
+
parser.add_argument("--beta3", type=float, default=None)
|
688 |
+
parser.add_argument("--weight_decay", type=float, default=1e-04)
|
689 |
+
parser.add_argument("--epsilon", type=float, default=1e-8)
|
690 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
691 |
|
692 |
|
693 |
def _add_validation_arguments(parser: argparse.ArgumentParser) -> None:
|
694 |
+
parser.add_argument("--validation_dataset_file", type=str, default=None)
|
695 |
+
parser.add_argument("--validation_steps", type=int, default=500)
|
696 |
+
parser.add_argument("--enable_model_cpu_offload", action="store_true")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
697 |
|
698 |
|
699 |
def _add_miscellaneous_arguments(parser: argparse.ArgumentParser) -> None:
|
700 |
+
parser.add_argument("--tracker_name", type=str, default="finetrainers")
|
701 |
+
parser.add_argument("--push_to_hub", action="store_true")
|
702 |
+
parser.add_argument("--hub_token", type=str, default=None)
|
703 |
+
parser.add_argument("--hub_model_id", type=str, default=None)
|
704 |
+
parser.add_argument("--output_dir", type=str, default="finetrainers-training")
|
705 |
+
parser.add_argument("--logging_dir", type=str, default="logs")
|
706 |
+
parser.add_argument("--logging_steps", type=int, default=1)
|
707 |
+
parser.add_argument("--allow_tf32", action="store_true")
|
708 |
+
parser.add_argument("--init_timeout", type=int, default=300)
|
709 |
+
parser.add_argument("--nccl_timeout", type=int, default=600)
|
710 |
+
parser.add_argument("--report_to", type=str, default="none", choices=["none", "wandb"])
|
711 |
+
parser.add_argument("--verbose", type=int, default=0, choices=[0, 1, 2, 3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
712 |
|
713 |
|
714 |
def _add_helper_arguments(parser: argparse.ArgumentParser) -> None:
|
715 |
+
parser.add_argument("--list_models", action="store_true")
|
|
|
|
|
|
|
|
|
716 |
|
717 |
|
718 |
_DTYPE_MAP = {
|
|
|
724 |
}
|
725 |
|
726 |
|
727 |
+
def _map_to_args_type(args: Dict[str, Any]) -> BaseArgs:
|
728 |
+
result_args = BaseArgs()
|
729 |
+
|
730 |
+
# Parallel arguments
|
731 |
+
result_args.parallel_backend = args.parallel_backend
|
732 |
+
result_args.pp_degree = args.pp_degree
|
733 |
+
result_args.dp_degree = args.dp_degree
|
734 |
+
result_args.dp_shards = args.dp_shards
|
735 |
+
result_args.cp_degree = args.cp_degree
|
736 |
+
result_args.tp_degree = args.tp_degree
|
737 |
|
738 |
# Model arguments
|
739 |
result_args.model_name = args.model_name
|
|
|
741 |
result_args.revision = args.revision
|
742 |
result_args.variant = args.variant
|
743 |
result_args.cache_dir = args.cache_dir
|
744 |
+
result_args.tokenizer_id = args.tokenizer_id
|
745 |
+
result_args.tokenizer_2_id = args.tokenizer_2_id
|
746 |
+
result_args.tokenizer_3_id = args.tokenizer_3_id
|
747 |
+
result_args.text_encoder_id = args.text_encoder_id
|
748 |
+
result_args.text_encoder_2_id = args.text_encoder_2_id
|
749 |
+
result_args.text_encoder_3_id = args.text_encoder_3_id
|
750 |
+
result_args.transformer_id = args.transformer_id
|
751 |
+
result_args.vae_id = args.vae_id
|
752 |
result_args.text_encoder_dtype = _DTYPE_MAP[args.text_encoder_dtype]
|
753 |
result_args.text_encoder_2_dtype = _DTYPE_MAP[args.text_encoder_2_dtype]
|
754 |
result_args.text_encoder_3_dtype = _DTYPE_MAP[args.text_encoder_3_dtype]
|
|
|
759 |
result_args.layerwise_upcasting_skip_modules_pattern = args.layerwise_upcasting_skip_modules_pattern
|
760 |
|
761 |
# Dataset arguments
|
762 |
+
result_args.dataset_config = args.dataset_config
|
763 |
+
result_args.dataset_shuffle_buffer_size = args.dataset_shuffle_buffer_size
|
764 |
+
result_args.precomputation_items = args.precomputation_items
|
765 |
+
result_args.precomputation_dir = args.precomputation_dir or os.path.join(args.output_dir, "precomputed")
|
766 |
+
result_args.precomputation_once = args.precomputation_once
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
767 |
|
768 |
# Dataloader arguments
|
769 |
result_args.dataloader_num_workers = args.dataloader_num_workers
|
|
|
785 |
result_args.training_type = args.training_type
|
786 |
result_args.seed = args.seed
|
787 |
result_args.batch_size = args.batch_size
|
|
|
788 |
result_args.train_steps = args.train_steps
|
789 |
+
result_args.max_data_samples = args.max_data_samples
|
|
|
|
|
790 |
result_args.gradient_accumulation_steps = args.gradient_accumulation_steps
|
791 |
result_args.gradient_checkpointing = args.gradient_checkpointing
|
792 |
result_args.checkpointing_steps = args.checkpointing_steps
|
|
|
797 |
|
798 |
# Optimizer arguments
|
799 |
result_args.optimizer = args.optimizer or "adamw"
|
|
|
800 |
result_args.lr = args.lr or 1e-4
|
|
|
801 |
result_args.lr_scheduler = args.lr_scheduler
|
802 |
result_args.lr_warmup_steps = args.lr_warmup_steps
|
803 |
result_args.lr_num_cycles = args.lr_num_cycles
|
|
|
810 |
result_args.max_grad_norm = args.max_grad_norm
|
811 |
|
812 |
# Validation arguments
|
813 |
+
result_args.validation_dataset_file = args.validation_dataset_file
|
814 |
+
result_args.validation_steps = args.validation_steps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
815 |
result_args.enable_model_cpu_offload = args.enable_model_cpu_offload
|
|
|
816 |
|
817 |
# Miscellaneous arguments
|
818 |
result_args.tracker_name = args.tracker_name
|
|
|
821 |
result_args.hub_model_id = args.hub_model_id
|
822 |
result_args.output_dir = args.output_dir
|
823 |
result_args.logging_dir = args.logging_dir
|
824 |
+
result_args.logging_steps = args.logging_steps
|
825 |
result_args.allow_tf32 = args.allow_tf32
|
826 |
+
result_args.init_timeout = args.init_timeout
|
827 |
result_args.nccl_timeout = args.nccl_timeout
|
828 |
result_args.report_to = args.report_to
|
829 |
+
result_args.verbose = args.verbose
|
830 |
|
831 |
return result_args
|
832 |
|
833 |
|
834 |
+
def _validate_model_args(args: BaseArgs):
|
835 |
if args.training_type == "full-finetune":
|
836 |
assert (
|
837 |
"transformer" not in args.layerwise_upcasting_modules
|
838 |
), "Layerwise upcasting is not supported for full-finetune training"
|
839 |
|
840 |
|
841 |
+
def _validate_dataset_args(args: BaseArgs):
|
842 |
+
dataset_config = pathlib.Path(args.dataset_config)
|
843 |
+
if not dataset_config.exists():
|
844 |
+
raise ValueError(f"Dataset config file {args.dataset_config} does not exist.")
|
845 |
+
if args.dataset_shuffle_buffer_size < 1:
|
846 |
+
raise ValueError("Dataset shuffle buffer size must be greater than 0.")
|
847 |
+
if args.precomputation_items < 1:
|
848 |
+
raise ValueError("Precomputation items must be greater than 0.")
|
849 |
+
|
850 |
+
|
851 |
+
def _validate_validation_args(args: BaseArgs):
|
852 |
+
if args.dp_shards > 1 and args.enable_model_cpu_offload:
|
853 |
+
raise ValueError("Model CPU offload is not supported with FSDP at the moment.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
854 |
|
855 |
|
856 |
def _display_helper_messages(args: argparse.Namespace):
|
finetrainers/config.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from typing import Type
|
3 |
+
|
4 |
+
from .models import ModelSpecification
|
5 |
+
from .models.cogvideox import CogVideoXModelSpecification
|
6 |
+
from .models.hunyuan_video import HunyuanVideoModelSpecification
|
7 |
+
from .models.ltx_video import LTXVideoModelSpecification
|
8 |
+
from .models.wan import WanModelSpecification
|
9 |
+
|
10 |
+
|
11 |
+
class ModelType(str, Enum):
|
12 |
+
COGVIDEOX = "cogvideox"
|
13 |
+
HUNYUAN_VIDEO = "hunyuan_video"
|
14 |
+
LTX_VIDEO = "ltx_video"
|
15 |
+
WAN = "wan"
|
16 |
+
|
17 |
+
|
18 |
+
class TrainingType(str, Enum):
|
19 |
+
LORA = "lora"
|
20 |
+
FULL_FINETUNE = "full-finetune"
|
21 |
+
|
22 |
+
|
23 |
+
SUPPORTED_MODEL_CONFIGS = {
|
24 |
+
ModelType.HUNYUAN_VIDEO: {
|
25 |
+
TrainingType.LORA: HunyuanVideoModelSpecification,
|
26 |
+
TrainingType.FULL_FINETUNE: HunyuanVideoModelSpecification,
|
27 |
+
},
|
28 |
+
ModelType.LTX_VIDEO: {
|
29 |
+
TrainingType.LORA: LTXVideoModelSpecification,
|
30 |
+
TrainingType.FULL_FINETUNE: LTXVideoModelSpecification,
|
31 |
+
},
|
32 |
+
ModelType.COGVIDEOX: {
|
33 |
+
TrainingType.LORA: CogVideoXModelSpecification,
|
34 |
+
TrainingType.FULL_FINETUNE: CogVideoXModelSpecification,
|
35 |
+
},
|
36 |
+
ModelType.WAN: {
|
37 |
+
TrainingType.LORA: WanModelSpecification,
|
38 |
+
TrainingType.FULL_FINETUNE: WanModelSpecification,
|
39 |
+
},
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
def _get_model_specifiction_cls(model_name: str, training_type: str) -> Type[ModelSpecification]:
|
44 |
+
if model_name not in SUPPORTED_MODEL_CONFIGS:
|
45 |
+
raise ValueError(
|
46 |
+
f"Model {model_name} not supported. Supported models are: {list(SUPPORTED_MODEL_CONFIGS.keys())}"
|
47 |
+
)
|
48 |
+
if training_type not in SUPPORTED_MODEL_CONFIGS[model_name]:
|
49 |
+
raise ValueError(
|
50 |
+
f"Training type {training_type} not supported for model {model_name}. Supported training types are: {list(SUPPORTED_MODEL_CONFIGS[model_name].keys())}"
|
51 |
+
)
|
52 |
+
return SUPPORTED_MODEL_CONFIGS[model_name][training_type]
|
finetrainers/constants.py
CHANGED
@@ -78,3 +78,6 @@ COMMON_LLM_START_PHRASES = (
|
|
78 |
for continuation in _COMMON_CONTINUATION_WORDS
|
79 |
),
|
80 |
)
|
|
|
|
|
|
|
|
78 |
for continuation in _COMMON_CONTINUATION_WORDS
|
79 |
),
|
80 |
)
|
81 |
+
|
82 |
+
SUPPORTED_IMAGE_FILE_EXTENSIONS = ("jpg", "jpeg", "png")
|
83 |
+
SUPPORTED_VIDEO_FILE_EXTENSIONS = ("mp4", "mov")
|
finetrainers/data/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._artifact import ImageArtifact, VideoArtifact
|
2 |
+
from .dataloader import DPDataLoader
|
3 |
+
from .dataset import (
|
4 |
+
ImageCaptionFilePairDataset,
|
5 |
+
ImageFileCaptionFileListDataset,
|
6 |
+
ImageFolderDataset,
|
7 |
+
ImageWebDataset,
|
8 |
+
ValidationDataset,
|
9 |
+
VideoCaptionFilePairDataset,
|
10 |
+
VideoFileCaptionFileListDataset,
|
11 |
+
VideoFolderDataset,
|
12 |
+
VideoWebDataset,
|
13 |
+
combine_datasets,
|
14 |
+
initialize_dataset,
|
15 |
+
wrap_iterable_dataset_for_preprocessing,
|
16 |
+
)
|
17 |
+
from .precomputation import DistributedDataPreprocessor, PreprocessedDataIterable
|
18 |
+
from .sampler import ResolutionSampler
|
19 |
+
from .utils import find_files
|
finetrainers/data/_artifact.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ===== THIS FILE ONLY EXISTS FOR THE TIME BEING SINCE I DID NOT KNOW WHERE TO PUT IT =====
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any, List
|
5 |
+
|
6 |
+
from PIL.Image import Image
|
7 |
+
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class Artifact:
|
11 |
+
type: str
|
12 |
+
value: Any
|
13 |
+
file_extension: str
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class ImageArtifact(Artifact):
|
18 |
+
value: Image
|
19 |
+
|
20 |
+
def __init__(self, value: Image):
|
21 |
+
super().__init__(type="image", value=value, file_extension="png")
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class VideoArtifact(Artifact):
|
26 |
+
value: List[Image]
|
27 |
+
|
28 |
+
def __init__(self, value: List[Image]):
|
29 |
+
super().__init__(type="video", value=value, file_extension="mp4")
|
finetrainers/data/dataloader.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from typing import Any, Dict
|
3 |
+
|
4 |
+
import torch.distributed.checkpoint.stateful
|
5 |
+
import torchdata.stateful_dataloader
|
6 |
+
|
7 |
+
from ..logging import get_logger
|
8 |
+
|
9 |
+
|
10 |
+
logger = get_logger()
|
11 |
+
|
12 |
+
|
13 |
+
class DPDataLoader(torchdata.stateful_dataloader.StatefulDataLoader, torch.distributed.checkpoint.stateful.Stateful):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
rank: int,
|
17 |
+
dataset: torch.utils.data.IterableDataset,
|
18 |
+
batch_size: int = 1,
|
19 |
+
num_workers: int = 0,
|
20 |
+
collate_fn=None,
|
21 |
+
) -> None:
|
22 |
+
super().__init__(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn)
|
23 |
+
|
24 |
+
self._dp_rank = rank
|
25 |
+
self._rank_id = f"dp_rank_{rank}"
|
26 |
+
|
27 |
+
def state_dict(self) -> Dict[str, Any]:
|
28 |
+
# Store state only for dp rank to avoid replicating the same state across other dimensions
|
29 |
+
return {self._rank_id: pickle.dumps(super().state_dict())}
|
30 |
+
|
31 |
+
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
|
32 |
+
# State being empty is valid
|
33 |
+
if not state_dict:
|
34 |
+
return
|
35 |
+
|
36 |
+
if self._rank_id not in state_dict:
|
37 |
+
logger.warning(f"DataLoader state is empty for dp rank {self._dp_rank}, expected key {self._rank_id}")
|
38 |
+
return
|
39 |
+
|
40 |
+
super().load_state_dict(pickle.loads(state_dict[self._rank_id]))
|
finetrainers/data/dataset.py
ADDED
@@ -0,0 +1,844 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pathlib
|
2 |
+
import random
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
import datasets.data_files
|
7 |
+
import datasets.distributed
|
8 |
+
import datasets.exceptions
|
9 |
+
import huggingface_hub
|
10 |
+
import huggingface_hub.errors
|
11 |
+
import numpy as np
|
12 |
+
import PIL.Image
|
13 |
+
import torch
|
14 |
+
import torch.distributed.checkpoint.stateful
|
15 |
+
from diffusers.utils import load_image, load_video
|
16 |
+
from huggingface_hub import list_repo_files, repo_exists, snapshot_download
|
17 |
+
from tqdm.auto import tqdm
|
18 |
+
|
19 |
+
from .. import constants
|
20 |
+
from .. import functional as FF
|
21 |
+
from ..logging import get_logger
|
22 |
+
from . import utils
|
23 |
+
|
24 |
+
|
25 |
+
import decord # isort:skip
|
26 |
+
|
27 |
+
decord.bridge.set_bridge("torch")
|
28 |
+
|
29 |
+
logger = get_logger()
|
30 |
+
|
31 |
+
|
32 |
+
MAX_PRECOMPUTABLE_ITEMS_LIMIT = 1024
|
33 |
+
COMMON_CAPTION_FILES = ["prompt.txt", "prompts.txt", "caption.txt", "captions.txt"]
|
34 |
+
COMMON_VIDEO_FILES = ["video.txt", "videos.txt"]
|
35 |
+
COMMON_IMAGE_FILES = ["image.txt", "images.txt"]
|
36 |
+
|
37 |
+
|
38 |
+
class ImageCaptionFilePairDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
39 |
+
def __init__(self, root: str, infinite: bool = False) -> None:
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
self.root = pathlib.Path(root)
|
43 |
+
self.infinite = infinite
|
44 |
+
|
45 |
+
data = []
|
46 |
+
caption_files = sorted(utils.find_files(self.root.as_posix(), "*.txt", depth=0))
|
47 |
+
for caption_file in caption_files:
|
48 |
+
data_file = self._find_data_file(caption_file)
|
49 |
+
if data_file:
|
50 |
+
data.append(
|
51 |
+
{
|
52 |
+
"caption": (self.root / caption_file).as_posix(),
|
53 |
+
"image": (self.root / data_file).as_posix(),
|
54 |
+
}
|
55 |
+
)
|
56 |
+
|
57 |
+
data = datasets.Dataset.from_list(data)
|
58 |
+
data = data.cast_column("image", datasets.Image(mode="RGB"))
|
59 |
+
|
60 |
+
self._data = data.to_iterable_dataset()
|
61 |
+
self._sample_index = 0
|
62 |
+
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
63 |
+
|
64 |
+
def _get_data_iter(self):
|
65 |
+
if self._sample_index == 0:
|
66 |
+
return iter(self._data)
|
67 |
+
return iter(self._data.skip(self._sample_index))
|
68 |
+
|
69 |
+
def __iter__(self):
|
70 |
+
while True:
|
71 |
+
for sample in self._get_data_iter():
|
72 |
+
self._sample_index += 1
|
73 |
+
sample["caption"] = _read_caption_from_file(sample["caption"])
|
74 |
+
sample["image"] = _preprocess_image(sample["image"])
|
75 |
+
yield sample
|
76 |
+
|
77 |
+
if not self.infinite:
|
78 |
+
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
79 |
+
break
|
80 |
+
else:
|
81 |
+
self._sample_index = 0
|
82 |
+
|
83 |
+
def load_state_dict(self, state_dict):
|
84 |
+
self._sample_index = state_dict["sample_index"]
|
85 |
+
|
86 |
+
def state_dict(self):
|
87 |
+
return {"sample_index": self._sample_index}
|
88 |
+
|
89 |
+
def _find_data_file(self, caption_file: str) -> str:
|
90 |
+
caption_file = pathlib.Path(caption_file)
|
91 |
+
data_file = None
|
92 |
+
found_data = 0
|
93 |
+
|
94 |
+
for extension in constants.SUPPORTED_IMAGE_FILE_EXTENSIONS:
|
95 |
+
image_filename = caption_file.with_suffix(f".{extension}")
|
96 |
+
if image_filename.exists():
|
97 |
+
found_data += 1
|
98 |
+
data_file = image_filename
|
99 |
+
|
100 |
+
if found_data == 0:
|
101 |
+
return False
|
102 |
+
elif found_data > 1:
|
103 |
+
raise ValueError(
|
104 |
+
f"Multiple data files found for caption file {caption_file}. Please ensure there is only one data "
|
105 |
+
f"file per caption file. The following extensions are supported:\n"
|
106 |
+
f" - Images: {constants.SUPPORTED_IMAGE_FILE_EXTENSIONS}\n"
|
107 |
+
)
|
108 |
+
|
109 |
+
return data_file.as_posix()
|
110 |
+
|
111 |
+
|
112 |
+
class VideoCaptionFilePairDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
113 |
+
def __init__(self, root: str, infinite: bool = False) -> None:
|
114 |
+
super().__init__()
|
115 |
+
|
116 |
+
self.root = pathlib.Path(root)
|
117 |
+
self.infinite = infinite
|
118 |
+
|
119 |
+
data = []
|
120 |
+
caption_files = sorted(utils.find_files(self.root.as_posix(), "*.txt", depth=0))
|
121 |
+
for caption_file in caption_files:
|
122 |
+
data_file = self._find_data_file(caption_file)
|
123 |
+
if data_file:
|
124 |
+
data.append(
|
125 |
+
{
|
126 |
+
"caption": (self.root / caption_file).as_posix(),
|
127 |
+
"video": (self.root / data_file).as_posix(),
|
128 |
+
}
|
129 |
+
)
|
130 |
+
|
131 |
+
data = datasets.Dataset.from_list(data)
|
132 |
+
data = data.cast_column("video", datasets.Video())
|
133 |
+
|
134 |
+
self._data = data.to_iterable_dataset()
|
135 |
+
self._sample_index = 0
|
136 |
+
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
137 |
+
|
138 |
+
def _get_data_iter(self):
|
139 |
+
if self._sample_index == 0:
|
140 |
+
return iter(self._data)
|
141 |
+
return iter(self._data.skip(self._sample_index))
|
142 |
+
|
143 |
+
def __iter__(self):
|
144 |
+
while True:
|
145 |
+
for sample in self._get_data_iter():
|
146 |
+
self._sample_index += 1
|
147 |
+
sample["caption"] = _read_caption_from_file(sample["caption"])
|
148 |
+
sample["video"] = _preprocess_video(sample["video"])
|
149 |
+
yield sample
|
150 |
+
|
151 |
+
if not self.infinite:
|
152 |
+
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
153 |
+
break
|
154 |
+
else:
|
155 |
+
self._sample_index = 0
|
156 |
+
|
157 |
+
def load_state_dict(self, state_dict):
|
158 |
+
self._sample_index = state_dict["sample_index"]
|
159 |
+
|
160 |
+
def state_dict(self):
|
161 |
+
return {"sample_index": self._sample_index}
|
162 |
+
|
163 |
+
def _find_data_file(self, caption_file: str) -> str:
|
164 |
+
caption_file = pathlib.Path(caption_file)
|
165 |
+
data_file = None
|
166 |
+
found_data = 0
|
167 |
+
|
168 |
+
for extension in constants.SUPPORTED_VIDEO_FILE_EXTENSIONS:
|
169 |
+
video_filename = caption_file.with_suffix(f".{extension}")
|
170 |
+
if video_filename.exists():
|
171 |
+
found_data += 1
|
172 |
+
data_file = video_filename
|
173 |
+
|
174 |
+
if found_data == 0:
|
175 |
+
return False
|
176 |
+
elif found_data > 1:
|
177 |
+
raise ValueError(
|
178 |
+
f"Multiple data files found for caption file {caption_file}. Please ensure there is only one data "
|
179 |
+
f"file per caption file. The following extensions are supported:\n"
|
180 |
+
f" - Videos: {constants.SUPPORTED_VIDEO_FILE_EXTENSIONS}\n"
|
181 |
+
)
|
182 |
+
|
183 |
+
return data_file.as_posix()
|
184 |
+
|
185 |
+
|
186 |
+
class ImageFileCaptionFileListDataset(
|
187 |
+
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
|
188 |
+
):
|
189 |
+
def __init__(self, root: str, infinite: bool = False) -> None:
|
190 |
+
super().__init__()
|
191 |
+
|
192 |
+
VALID_CAPTION_FILES = ["caption.txt", "captions.txt", "prompt.txt", "prompts.txt"]
|
193 |
+
VALID_IMAGE_FILES = ["image.txt", "images.txt"]
|
194 |
+
|
195 |
+
self.root = pathlib.Path(root)
|
196 |
+
self.infinite = infinite
|
197 |
+
|
198 |
+
data = []
|
199 |
+
existing_caption_files = [file for file in VALID_CAPTION_FILES if (self.root / file).exists()]
|
200 |
+
existing_image_files = [file for file in VALID_IMAGE_FILES if (self.root / file).exists()]
|
201 |
+
|
202 |
+
if len(existing_caption_files) == 0:
|
203 |
+
raise FileNotFoundError(
|
204 |
+
f"No caption file found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
|
205 |
+
)
|
206 |
+
if len(existing_image_files) == 0:
|
207 |
+
raise FileNotFoundError(
|
208 |
+
f"No image file found in {self.root}. Must have exactly one of {VALID_IMAGE_FILES}"
|
209 |
+
)
|
210 |
+
if len(existing_caption_files) > 1:
|
211 |
+
raise ValueError(
|
212 |
+
f"Multiple caption files found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
|
213 |
+
)
|
214 |
+
if len(existing_image_files) > 1:
|
215 |
+
raise ValueError(
|
216 |
+
f"Multiple image files found in {self.root}. Must have exactly one of {VALID_IMAGE_FILES}"
|
217 |
+
)
|
218 |
+
|
219 |
+
caption_file = existing_caption_files[0]
|
220 |
+
image_file = existing_image_files[0]
|
221 |
+
|
222 |
+
with open((self.root / caption_file).as_posix(), "r") as f:
|
223 |
+
captions = f.read().splitlines()
|
224 |
+
with open((self.root / image_file).as_posix(), "r") as f:
|
225 |
+
images = f.read().splitlines()
|
226 |
+
images = [(self.root / image).as_posix() for image in images]
|
227 |
+
|
228 |
+
if len(captions) != len(images):
|
229 |
+
raise ValueError(f"Number of captions ({len(captions)}) must match number of images ({len(images)})")
|
230 |
+
|
231 |
+
for caption, image in zip(captions, images):
|
232 |
+
data.append({"caption": caption, "image": image})
|
233 |
+
|
234 |
+
data = datasets.Dataset.from_list(data)
|
235 |
+
data = data.cast_column("image", datasets.Image(mode="RGB"))
|
236 |
+
|
237 |
+
self._data = data.to_iterable_dataset()
|
238 |
+
self._sample_index = 0
|
239 |
+
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
240 |
+
|
241 |
+
def _get_data_iter(self):
|
242 |
+
if self._sample_index == 0:
|
243 |
+
return iter(self._data)
|
244 |
+
return iter(self._data.skip(self._sample_index))
|
245 |
+
|
246 |
+
def __iter__(self):
|
247 |
+
while True:
|
248 |
+
for sample in self._get_data_iter():
|
249 |
+
self._sample_index += 1
|
250 |
+
sample["image"] = _preprocess_image(sample["image"])
|
251 |
+
yield sample
|
252 |
+
|
253 |
+
if not self.infinite:
|
254 |
+
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
255 |
+
break
|
256 |
+
else:
|
257 |
+
self._sample_index = 0
|
258 |
+
|
259 |
+
def load_state_dict(self, state_dict):
|
260 |
+
self._sample_index = state_dict["sample_index"]
|
261 |
+
|
262 |
+
def state_dict(self):
|
263 |
+
return {"sample_index": self._sample_index}
|
264 |
+
|
265 |
+
|
266 |
+
class VideoFileCaptionFileListDataset(
|
267 |
+
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
|
268 |
+
):
|
269 |
+
def __init__(self, root: str, infinite: bool = False) -> None:
|
270 |
+
super().__init__()
|
271 |
+
|
272 |
+
VALID_CAPTION_FILES = ["caption.txt", "captions.txt", "prompt.txt", "prompts.txt"]
|
273 |
+
VALID_VIDEO_FILES = ["video.txt", "videos.txt"]
|
274 |
+
|
275 |
+
self.root = pathlib.Path(root)
|
276 |
+
self.infinite = infinite
|
277 |
+
|
278 |
+
data = []
|
279 |
+
existing_caption_files = [file for file in VALID_CAPTION_FILES if (self.root / file).exists()]
|
280 |
+
existing_video_files = [file for file in VALID_VIDEO_FILES if (self.root / file).exists()]
|
281 |
+
|
282 |
+
if len(existing_caption_files) == 0:
|
283 |
+
raise FileNotFoundError(
|
284 |
+
f"No caption file found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
|
285 |
+
)
|
286 |
+
if len(existing_video_files) == 0:
|
287 |
+
raise FileNotFoundError(
|
288 |
+
f"No video file found in {self.root}. Must have exactly one of {VALID_VIDEO_FILES}"
|
289 |
+
)
|
290 |
+
if len(existing_caption_files) > 1:
|
291 |
+
raise ValueError(
|
292 |
+
f"Multiple caption files found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
|
293 |
+
)
|
294 |
+
if len(existing_video_files) > 1:
|
295 |
+
raise ValueError(
|
296 |
+
f"Multiple video files found in {self.root}. Must have exactly one of {VALID_VIDEO_FILES}"
|
297 |
+
)
|
298 |
+
|
299 |
+
caption_file = existing_caption_files[0]
|
300 |
+
video_file = existing_video_files[0]
|
301 |
+
|
302 |
+
with open((self.root / caption_file).as_posix(), "r") as f:
|
303 |
+
captions = f.read().splitlines()
|
304 |
+
with open((self.root / video_file).as_posix(), "r") as f:
|
305 |
+
videos = f.read().splitlines()
|
306 |
+
videos = [(self.root / video).as_posix() for video in videos]
|
307 |
+
|
308 |
+
if len(captions) != len(videos):
|
309 |
+
raise ValueError(f"Number of captions ({len(captions)}) must match number of videos ({len(videos)})")
|
310 |
+
|
311 |
+
for caption, video in zip(captions, videos):
|
312 |
+
data.append({"caption": caption, "video": video})
|
313 |
+
|
314 |
+
data = datasets.Dataset.from_list(data)
|
315 |
+
data = data.cast_column("video", datasets.Video())
|
316 |
+
|
317 |
+
self._data = data.to_iterable_dataset()
|
318 |
+
self._sample_index = 0
|
319 |
+
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
320 |
+
|
321 |
+
def _get_data_iter(self):
|
322 |
+
if self._sample_index == 0:
|
323 |
+
return iter(self._data)
|
324 |
+
return iter(self._data.skip(self._sample_index))
|
325 |
+
|
326 |
+
def __iter__(self):
|
327 |
+
while True:
|
328 |
+
for sample in self._get_data_iter():
|
329 |
+
self._sample_index += 1
|
330 |
+
sample["video"] = _preprocess_video(sample["video"])
|
331 |
+
yield sample
|
332 |
+
|
333 |
+
if not self.infinite:
|
334 |
+
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
335 |
+
break
|
336 |
+
else:
|
337 |
+
self._sample_index = 0
|
338 |
+
|
339 |
+
def load_state_dict(self, state_dict):
|
340 |
+
self._sample_index = state_dict["sample_index"]
|
341 |
+
|
342 |
+
def state_dict(self):
|
343 |
+
return {"sample_index": self._sample_index}
|
344 |
+
|
345 |
+
|
346 |
+
class ImageFolderDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
347 |
+
def __init__(self, root: str, infinite: bool = False) -> None:
|
348 |
+
super().__init__()
|
349 |
+
|
350 |
+
self.root = pathlib.Path(root)
|
351 |
+
self.infinite = infinite
|
352 |
+
|
353 |
+
data = datasets.load_dataset("imagefolder", data_dir=self.root.as_posix(), split="train")
|
354 |
+
|
355 |
+
self._data = data.to_iterable_dataset()
|
356 |
+
self._sample_index = 0
|
357 |
+
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
358 |
+
|
359 |
+
def _get_data_iter(self):
|
360 |
+
if self._sample_index == 0:
|
361 |
+
return iter(self._data)
|
362 |
+
return iter(self._data.skip(self._sample_index))
|
363 |
+
|
364 |
+
def __iter__(self):
|
365 |
+
while True:
|
366 |
+
for sample in self._get_data_iter():
|
367 |
+
self._sample_index += 1
|
368 |
+
sample["image"] = _preprocess_image(sample["image"])
|
369 |
+
yield sample
|
370 |
+
|
371 |
+
if not self.infinite:
|
372 |
+
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
373 |
+
break
|
374 |
+
else:
|
375 |
+
self._sample_index = 0
|
376 |
+
|
377 |
+
def load_state_dict(self, state_dict):
|
378 |
+
self._sample_index = state_dict["sample_index"]
|
379 |
+
|
380 |
+
def state_dict(self):
|
381 |
+
return {"sample_index": self._sample_index}
|
382 |
+
|
383 |
+
|
384 |
+
class VideoFolderDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
385 |
+
def __init__(self, root: str, infinite: bool = False) -> None:
|
386 |
+
super().__init__()
|
387 |
+
|
388 |
+
self.root = pathlib.Path(root)
|
389 |
+
self.infinite = infinite
|
390 |
+
|
391 |
+
data = datasets.load_dataset("videofolder", data_dir=self.root.as_posix(), split="train")
|
392 |
+
|
393 |
+
self._data = data.to_iterable_dataset()
|
394 |
+
self._sample_index = 0
|
395 |
+
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
396 |
+
|
397 |
+
def _get_data_iter(self):
|
398 |
+
if self._sample_index == 0:
|
399 |
+
return iter(self._data)
|
400 |
+
return iter(self._data.skip(self._sample_index))
|
401 |
+
|
402 |
+
def __iter__(self):
|
403 |
+
while True:
|
404 |
+
for sample in self._get_data_iter():
|
405 |
+
self._sample_index += 1
|
406 |
+
sample["video"] = _preprocess_video(sample["video"])
|
407 |
+
yield sample
|
408 |
+
|
409 |
+
if not self.infinite:
|
410 |
+
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
411 |
+
break
|
412 |
+
else:
|
413 |
+
self._sample_index = 0
|
414 |
+
|
415 |
+
def load_state_dict(self, state_dict):
|
416 |
+
self._sample_index = state_dict["sample_index"]
|
417 |
+
|
418 |
+
def state_dict(self):
|
419 |
+
return {"sample_index": self._sample_index}
|
420 |
+
|
421 |
+
|
422 |
+
class ImageWebDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
423 |
+
def __init__(self, dataset_name: str, infinite: bool = False) -> None:
|
424 |
+
super().__init__()
|
425 |
+
|
426 |
+
self.dataset_name = dataset_name
|
427 |
+
self.infinite = infinite
|
428 |
+
|
429 |
+
data = datasets.load_dataset(dataset_name, split="train", streaming=True)
|
430 |
+
data = data.rename_column("txt", "caption")
|
431 |
+
for column_name in constants.SUPPORTED_IMAGE_FILE_EXTENSIONS:
|
432 |
+
if column_name in data.column_names:
|
433 |
+
data = data.cast_column(column_name, datasets.Image(mode="RGB"))
|
434 |
+
data = data.rename_column(column_name, "image")
|
435 |
+
|
436 |
+
self._data = data
|
437 |
+
self._sample_index = 0
|
438 |
+
self._precomputable_once = False
|
439 |
+
|
440 |
+
def _get_data_iter(self):
|
441 |
+
if self._sample_index == 0:
|
442 |
+
return iter(self._data)
|
443 |
+
return iter(self._data.skip(self._sample_index))
|
444 |
+
|
445 |
+
def __iter__(self):
|
446 |
+
while True:
|
447 |
+
for sample in self._get_data_iter():
|
448 |
+
self._sample_index += 1
|
449 |
+
yield sample
|
450 |
+
|
451 |
+
if not self.infinite:
|
452 |
+
logger.warning(f"Dataset {self.dataset_name} has run out of data")
|
453 |
+
break
|
454 |
+
else:
|
455 |
+
# Reset offset for the next iteration
|
456 |
+
self._sample_index = 0
|
457 |
+
logger.warning(f"Dataset {self.dataset_name} is being re-looped")
|
458 |
+
|
459 |
+
def load_state_dict(self, state_dict):
|
460 |
+
self._sample_index = state_dict["sample_index"]
|
461 |
+
|
462 |
+
def state_dict(self):
|
463 |
+
return {"sample_index": self._sample_index}
|
464 |
+
|
465 |
+
|
466 |
+
class VideoWebDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
467 |
+
def __init__(self, dataset_name: str, infinite: bool = False) -> None:
|
468 |
+
super().__init__()
|
469 |
+
|
470 |
+
self.dataset_name = dataset_name
|
471 |
+
self.infinite = infinite
|
472 |
+
|
473 |
+
data = datasets.load_dataset(dataset_name, split="train", streaming=True)
|
474 |
+
data = data.rename_column("txt", "caption")
|
475 |
+
for column_name in constants.SUPPORTED_VIDEO_FILE_EXTENSIONS:
|
476 |
+
if column_name in data.column_names:
|
477 |
+
data = data.cast_column(column_name, datasets.Video())
|
478 |
+
data = data.rename_column(column_name, "video")
|
479 |
+
|
480 |
+
self._data = data
|
481 |
+
self._sample_index = 0
|
482 |
+
self._precomputable_once = False
|
483 |
+
|
484 |
+
def _get_data_iter(self):
|
485 |
+
if self._sample_index == 0:
|
486 |
+
return iter(self._data)
|
487 |
+
return iter(self._data.skip(self._sample_index))
|
488 |
+
|
489 |
+
def __iter__(self):
|
490 |
+
while True:
|
491 |
+
for sample in self._get_data_iter():
|
492 |
+
self._sample_index += 1
|
493 |
+
yield sample
|
494 |
+
|
495 |
+
if not self.infinite:
|
496 |
+
logger.warning(f"Dataset {self.dataset_name} has run out of data")
|
497 |
+
break
|
498 |
+
else:
|
499 |
+
# Reset offset for the next iteration
|
500 |
+
self._sample_index = 0
|
501 |
+
logger.warning(f"Dataset {self.dataset_name} is being re-looped")
|
502 |
+
|
503 |
+
def load_state_dict(self, state_dict):
|
504 |
+
self._sample_index = state_dict["sample_index"]
|
505 |
+
|
506 |
+
def state_dict(self):
|
507 |
+
return {"sample_index": self._sample_index}
|
508 |
+
|
509 |
+
|
510 |
+
class ValidationDataset(torch.utils.data.IterableDataset):
|
511 |
+
def __init__(self, filename: str):
|
512 |
+
super().__init__()
|
513 |
+
|
514 |
+
self.filename = pathlib.Path(filename)
|
515 |
+
|
516 |
+
if not self.filename.exists():
|
517 |
+
raise FileNotFoundError(f"File {self.filename.as_posix()} does not exist")
|
518 |
+
|
519 |
+
if self.filename.suffix == ".csv":
|
520 |
+
data = datasets.load_dataset("csv", data_files=self.filename.as_posix(), split="train")
|
521 |
+
elif self.filename.suffix == ".json":
|
522 |
+
data = datasets.load_dataset("json", data_files=self.filename.as_posix(), split="train", field="data")
|
523 |
+
elif self.filename.suffix == ".parquet":
|
524 |
+
data = datasets.load_dataset("parquet", data_files=self.filename.as_posix(), split="train")
|
525 |
+
elif self.filename.suffix == ".arrow":
|
526 |
+
data = datasets.load_dataset("arrow", data_files=self.filename.as_posix(), split="train")
|
527 |
+
else:
|
528 |
+
_SUPPORTED_FILE_FORMATS = [".csv", ".json", ".parquet", ".arrow"]
|
529 |
+
raise ValueError(
|
530 |
+
f"Unsupported file format {self.filename.suffix} for validation dataset. Supported formats are: {_SUPPORTED_FILE_FORMATS}"
|
531 |
+
)
|
532 |
+
|
533 |
+
self._data = data.to_iterable_dataset()
|
534 |
+
|
535 |
+
def __iter__(self):
|
536 |
+
for sample in self._data:
|
537 |
+
# For consistency reasons, we mandate that "caption" is always present in the validation dataset.
|
538 |
+
# However, since the model specifications use "prompt", we create an alias here.
|
539 |
+
sample["prompt"] = sample["caption"]
|
540 |
+
|
541 |
+
# Load image or video if the path is provided
|
542 |
+
# TODO(aryan): need to handle custom columns here for control conditions
|
543 |
+
sample["image"] = None
|
544 |
+
sample["video"] = None
|
545 |
+
|
546 |
+
if sample.get("image_path", None) is not None:
|
547 |
+
image_path = pathlib.Path(sample["image_path"])
|
548 |
+
if not image_path.is_file():
|
549 |
+
logger.warning(f"Image file {image_path.as_posix()} does not exist.")
|
550 |
+
else:
|
551 |
+
sample["image"] = load_image(sample["image_path"])
|
552 |
+
|
553 |
+
if sample.get("video_path", None) is not None:
|
554 |
+
video_path = pathlib.Path(sample["video_path"])
|
555 |
+
if not video_path.is_file():
|
556 |
+
logger.warning(f"Video file {video_path.as_posix()} does not exist.")
|
557 |
+
else:
|
558 |
+
sample["video"] = load_video(sample["video_path"])
|
559 |
+
|
560 |
+
sample = {k: v for k, v in sample.items() if v is not None}
|
561 |
+
yield sample
|
562 |
+
|
563 |
+
|
564 |
+
class IterableDatasetPreprocessingWrapper(
|
565 |
+
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
|
566 |
+
):
|
567 |
+
def __init__(
|
568 |
+
self,
|
569 |
+
dataset: torch.utils.data.IterableDataset,
|
570 |
+
dataset_type: str,
|
571 |
+
id_token: Optional[str] = None,
|
572 |
+
image_resolution_buckets: List[Tuple[int, int]] = None,
|
573 |
+
video_resolution_buckets: List[Tuple[int, int, int]] = None,
|
574 |
+
reshape_mode: str = "bicubic",
|
575 |
+
remove_common_llm_caption_prefixes: bool = False,
|
576 |
+
**kwargs,
|
577 |
+
):
|
578 |
+
super().__init__()
|
579 |
+
|
580 |
+
self.dataset = dataset
|
581 |
+
self.dataset_type = dataset_type
|
582 |
+
self.id_token = id_token
|
583 |
+
self.image_resolution_buckets = image_resolution_buckets
|
584 |
+
self.video_resolution_buckets = video_resolution_buckets
|
585 |
+
self.reshape_mode = reshape_mode
|
586 |
+
self.remove_common_llm_caption_prefixes = remove_common_llm_caption_prefixes
|
587 |
+
|
588 |
+
logger.info(
|
589 |
+
f"Initializing IterableDatasetPreprocessingWrapper for the dataset with the following configuration:\n"
|
590 |
+
f" - Dataset Type: {dataset_type}\n"
|
591 |
+
f" - ID Token: {id_token}\n"
|
592 |
+
f" - Image Resolution Buckets: {image_resolution_buckets}\n"
|
593 |
+
f" - Video Resolution Buckets: {video_resolution_buckets}\n"
|
594 |
+
f" - Reshape Mode: {reshape_mode}\n"
|
595 |
+
f" - Remove Common LLM Caption Prefixes: {remove_common_llm_caption_prefixes}\n"
|
596 |
+
)
|
597 |
+
|
598 |
+
def __iter__(self):
|
599 |
+
logger.info("Starting IterableDatasetPreprocessingWrapper for the dataset")
|
600 |
+
for sample in iter(self.dataset):
|
601 |
+
if self.dataset_type == "image":
|
602 |
+
if self.image_resolution_buckets:
|
603 |
+
sample["image"] = FF.resize_to_nearest_bucket_image(
|
604 |
+
sample["image"], self.image_resolution_buckets, self.reshape_mode
|
605 |
+
)
|
606 |
+
elif self.dataset_type == "video":
|
607 |
+
if self.video_resolution_buckets:
|
608 |
+
sample["video"], _first_frame_only = FF.resize_to_nearest_bucket_video(
|
609 |
+
sample["video"], self.video_resolution_buckets, self.reshape_mode
|
610 |
+
)
|
611 |
+
if _first_frame_only:
|
612 |
+
msg = (
|
613 |
+
"The number of frames in the video is less than the minimum bucket size "
|
614 |
+
"specified. The first frame is being used as a single frame video. This "
|
615 |
+
"message is logged at the first occurence and for every 128th occurence "
|
616 |
+
"after that."
|
617 |
+
)
|
618 |
+
logger.log_freq("WARNING", "BUCKET_TEMPORAL_SIZE_UNAVAILABLE", msg, frequency=128)
|
619 |
+
sample["video"] = sample["video"][0]
|
620 |
+
|
621 |
+
if self.remove_common_llm_caption_prefixes:
|
622 |
+
sample["caption"] = FF.remove_prefix(sample["caption"], constants.COMMON_LLM_START_PHRASES)
|
623 |
+
|
624 |
+
if self.id_token is not None:
|
625 |
+
sample["caption"] = f"{self.id_token} {sample['caption']}"
|
626 |
+
|
627 |
+
yield sample
|
628 |
+
|
629 |
+
def load_state_dict(self, state_dict):
|
630 |
+
self.dataset.load_state_dict(state_dict["dataset"])
|
631 |
+
|
632 |
+
def state_dict(self):
|
633 |
+
return {"dataset": self.dataset.state_dict()}
|
634 |
+
|
635 |
+
|
636 |
+
class IterableCombinedDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
637 |
+
def __init__(self, datasets: List[torch.utils.data.IterableDataset], buffer_size: int, shuffle: bool = False):
|
638 |
+
super().__init__()
|
639 |
+
|
640 |
+
self.datasets = datasets
|
641 |
+
self.buffer_size = buffer_size
|
642 |
+
self.shuffle = shuffle
|
643 |
+
|
644 |
+
logger.info(
|
645 |
+
f"Initializing IterableCombinedDataset with the following configuration:\n"
|
646 |
+
f" - Number of Datasets: {len(datasets)}\n"
|
647 |
+
f" - Buffer Size: {buffer_size}\n"
|
648 |
+
f" - Shuffle: {shuffle}\n"
|
649 |
+
)
|
650 |
+
|
651 |
+
def __iter__(self):
|
652 |
+
logger.info(f"Starting IterableCombinedDataset with {len(self.datasets)} datasets")
|
653 |
+
iterators = [iter(dataset) for dataset in self.datasets]
|
654 |
+
buffer = []
|
655 |
+
per_iter = max(1, self.buffer_size // len(iterators))
|
656 |
+
|
657 |
+
for index, it in enumerate(iterators):
|
658 |
+
for _ in tqdm(range(per_iter), desc=f"Filling buffer from data iterator {index}"):
|
659 |
+
try:
|
660 |
+
buffer.append((it, next(it)))
|
661 |
+
except StopIteration:
|
662 |
+
continue
|
663 |
+
|
664 |
+
while len(buffer) > 0:
|
665 |
+
idx = 0
|
666 |
+
if self.shuffle:
|
667 |
+
idx = random.randint(0, len(buffer) - 1)
|
668 |
+
current_it, sample = buffer.pop(idx)
|
669 |
+
yield sample
|
670 |
+
try:
|
671 |
+
buffer.append((current_it, next(current_it)))
|
672 |
+
except StopIteration:
|
673 |
+
pass
|
674 |
+
|
675 |
+
def load_state_dict(self, state_dict):
|
676 |
+
for dataset, dataset_state_dict in zip(self.datasets, state_dict["datasets"]):
|
677 |
+
dataset.load_state_dict(dataset_state_dict)
|
678 |
+
|
679 |
+
def state_dict(self):
|
680 |
+
return {"datasets": [dataset.state_dict() for dataset in self.datasets]}
|
681 |
+
|
682 |
+
|
683 |
+
# TODO(aryan): maybe write a test for this
|
684 |
+
def initialize_dataset(
|
685 |
+
dataset_name_or_root: str, dataset_type: str = "video", streaming: bool = True, infinite: bool = False
|
686 |
+
) -> torch.utils.data.IterableDataset:
|
687 |
+
assert dataset_type in ["image", "video"]
|
688 |
+
|
689 |
+
try:
|
690 |
+
does_repo_exist_on_hub = repo_exists(dataset_name_or_root, repo_type="dataset")
|
691 |
+
except huggingface_hub.errors.HFValidationError:
|
692 |
+
does_repo_exist_on_hub = False
|
693 |
+
|
694 |
+
if does_repo_exist_on_hub:
|
695 |
+
return _initialize_hub_dataset(dataset_name_or_root, dataset_type, infinite)
|
696 |
+
else:
|
697 |
+
return _initialize_local_dataset(dataset_name_or_root, dataset_type, infinite)
|
698 |
+
|
699 |
+
|
700 |
+
def combine_datasets(
|
701 |
+
datasets: List[torch.utils.data.IterableDataset], buffer_size: int, shuffle: bool = False
|
702 |
+
) -> torch.utils.data.IterableDataset:
|
703 |
+
return IterableCombinedDataset(datasets=datasets, buffer_size=buffer_size, shuffle=shuffle)
|
704 |
+
|
705 |
+
|
706 |
+
def wrap_iterable_dataset_for_preprocessing(
|
707 |
+
dataset: torch.utils.data.IterableDataset, dataset_type: str, config: Dict[str, Any]
|
708 |
+
) -> torch.utils.data.IterableDataset:
|
709 |
+
return IterableDatasetPreprocessingWrapper(dataset, dataset_type, **config)
|
710 |
+
|
711 |
+
|
712 |
+
def _initialize_local_dataset(dataset_name_or_root: str, dataset_type: str, infinite: bool = False):
|
713 |
+
root = pathlib.Path(dataset_name_or_root)
|
714 |
+
supported_metadata_files = ["metadata.json", "metadata.jsonl", "metadata.csv"]
|
715 |
+
metadata_files = [root / metadata_file for metadata_file in supported_metadata_files]
|
716 |
+
metadata_files = [metadata_file for metadata_file in metadata_files if metadata_file.exists()]
|
717 |
+
|
718 |
+
if len(metadata_files) > 1:
|
719 |
+
raise ValueError("Found multiple metadata files. Please ensure there is only one metadata file.")
|
720 |
+
|
721 |
+
if len(metadata_files) == 1:
|
722 |
+
if dataset_type == "image":
|
723 |
+
dataset = ImageFolderDataset(root.as_posix(), infinite=infinite)
|
724 |
+
else:
|
725 |
+
dataset = VideoFolderDataset(root.as_posix(), infinite=infinite)
|
726 |
+
return dataset
|
727 |
+
|
728 |
+
if _has_data_caption_file_pairs(root, remote=False):
|
729 |
+
if dataset_type == "image":
|
730 |
+
dataset = ImageCaptionFilePairDataset(root.as_posix(), infinite=infinite)
|
731 |
+
else:
|
732 |
+
dataset = VideoCaptionFilePairDataset(root.as_posix(), infinite=infinite)
|
733 |
+
elif _has_data_file_caption_file_lists(root, remote=False):
|
734 |
+
if dataset_type == "image":
|
735 |
+
dataset = ImageFileCaptionFileListDataset(root.as_posix(), infinite=infinite)
|
736 |
+
else:
|
737 |
+
dataset = VideoFileCaptionFileListDataset(root.as_posix(), infinite=infinite)
|
738 |
+
else:
|
739 |
+
raise ValueError(
|
740 |
+
f"Could not find any supported dataset structure in the directory {root}. Please open an issue at "
|
741 |
+
f"https://github.com/a-r-r-o-w/finetrainers with information about your dataset structure and we will "
|
742 |
+
f"help you set it up."
|
743 |
+
)
|
744 |
+
|
745 |
+
return dataset
|
746 |
+
|
747 |
+
|
748 |
+
def _initialize_hub_dataset(dataset_name: str, dataset_type: str, infinite: bool = False):
|
749 |
+
repo_file_list = list_repo_files(dataset_name, repo_type="dataset")
|
750 |
+
if _has_data_caption_file_pairs(repo_file_list, remote=True):
|
751 |
+
return _initialize_data_caption_file_dataset_from_hub(dataset_name, dataset_type, infinite)
|
752 |
+
elif _has_data_file_caption_file_lists(repo_file_list, remote=True):
|
753 |
+
return _initialize_data_file_caption_file_dataset_from_hub(dataset_name, dataset_type, infinite)
|
754 |
+
else:
|
755 |
+
return _initialize_webdataset(dataset_name, dataset_type, infinite)
|
756 |
+
|
757 |
+
|
758 |
+
def _initialize_data_caption_file_dataset_from_hub(
|
759 |
+
dataset_name: str, dataset_type: str, infinite: bool = False
|
760 |
+
) -> torch.utils.data.IterableDataset:
|
761 |
+
logger.info(f"Downloading dataset {dataset_name} from the HF Hub")
|
762 |
+
dataset_root = snapshot_download(dataset_name, repo_type="dataset")
|
763 |
+
if dataset_type == "image":
|
764 |
+
return ImageCaptionFilePairDataset(dataset_root, infinite=infinite)
|
765 |
+
else:
|
766 |
+
return VideoCaptionFilePairDataset(dataset_root, infinite=infinite)
|
767 |
+
|
768 |
+
|
769 |
+
def _initialize_data_file_caption_file_dataset_from_hub(
|
770 |
+
dataset_name: str, dataset_type: str, infinite: bool = False
|
771 |
+
) -> torch.utils.data.IterableDataset:
|
772 |
+
logger.info(f"Downloading dataset {dataset_name} from the HF Hub")
|
773 |
+
dataset_root = snapshot_download(dataset_name, repo_type="dataset")
|
774 |
+
if dataset_type == "image":
|
775 |
+
return ImageFileCaptionFileListDataset(dataset_root, infinite=infinite)
|
776 |
+
else:
|
777 |
+
return VideoFileCaptionFileListDataset(dataset_root, infinite=infinite)
|
778 |
+
|
779 |
+
|
780 |
+
def _initialize_webdataset(
|
781 |
+
dataset_name: str, dataset_type: str, infinite: bool = False
|
782 |
+
) -> torch.utils.data.IterableDataset:
|
783 |
+
logger.info(f"Streaming webdataset {dataset_name} from the HF Hub")
|
784 |
+
if dataset_type == "image":
|
785 |
+
return ImageWebDataset(dataset_name, infinite=infinite)
|
786 |
+
else:
|
787 |
+
return VideoWebDataset(dataset_name, infinite=infinite)
|
788 |
+
|
789 |
+
|
790 |
+
def _has_data_caption_file_pairs(root: Union[pathlib.Path, List[str]], remote: bool = False) -> bool:
|
791 |
+
# TODO(aryan): this logic can be improved
|
792 |
+
if not remote:
|
793 |
+
caption_files = utils.find_files(root.as_posix(), "*.txt", depth=0)
|
794 |
+
for caption_file in caption_files:
|
795 |
+
caption_file = pathlib.Path(caption_file)
|
796 |
+
for extension in [*constants.SUPPORTED_IMAGE_FILE_EXTENSIONS, *constants.SUPPORTED_VIDEO_FILE_EXTENSIONS]:
|
797 |
+
data_filename = caption_file.with_suffix(f".{extension}")
|
798 |
+
if data_filename.exists():
|
799 |
+
return True
|
800 |
+
return False
|
801 |
+
else:
|
802 |
+
caption_files = [file for file in root if file.endswith(".txt")]
|
803 |
+
for caption_file in caption_files:
|
804 |
+
caption_file = pathlib.Path(caption_file)
|
805 |
+
for extension in [*constants.SUPPORTED_IMAGE_FILE_EXTENSIONS, *constants.SUPPORTED_VIDEO_FILE_EXTENSIONS]:
|
806 |
+
data_filename = caption_file.with_suffix(f".{extension}").name
|
807 |
+
if data_filename in root:
|
808 |
+
return True
|
809 |
+
return False
|
810 |
+
|
811 |
+
|
812 |
+
def _has_data_file_caption_file_lists(root: Union[pathlib.Path, List[str]], remote: bool = False) -> bool:
|
813 |
+
# TODO(aryan): this logic can be improved
|
814 |
+
if not remote:
|
815 |
+
file_list = {x.name for x in root.iterdir()}
|
816 |
+
has_caption_files = any(file in file_list for file in COMMON_CAPTION_FILES)
|
817 |
+
has_video_files = any(file in file_list for file in COMMON_VIDEO_FILES)
|
818 |
+
has_image_files = any(file in file_list for file in COMMON_IMAGE_FILES)
|
819 |
+
return has_caption_files and (has_video_files or has_image_files)
|
820 |
+
else:
|
821 |
+
has_caption_files = any(file in root for file in COMMON_CAPTION_FILES)
|
822 |
+
has_video_files = any(file in root for file in COMMON_VIDEO_FILES)
|
823 |
+
has_image_files = any(file in root for file in COMMON_IMAGE_FILES)
|
824 |
+
return has_caption_files and (has_video_files or has_image_files)
|
825 |
+
|
826 |
+
|
827 |
+
def _read_caption_from_file(filename: str) -> str:
|
828 |
+
with open(filename, "r") as f:
|
829 |
+
return f.read().strip()
|
830 |
+
|
831 |
+
|
832 |
+
def _preprocess_image(image: PIL.Image.Image) -> torch.Tensor:
|
833 |
+
image = image.convert("RGB")
|
834 |
+
image = np.array(image).astype(np.float32)
|
835 |
+
image = torch.from_numpy(image)
|
836 |
+
image = image.permute(2, 0, 1).contiguous() / 127.5 - 1.0
|
837 |
+
return image
|
838 |
+
|
839 |
+
|
840 |
+
def _preprocess_video(video: decord.VideoReader) -> torch.Tensor:
|
841 |
+
video = video.get_batch(list(range(len(video))))
|
842 |
+
video = video.permute(0, 3, 1, 2).contiguous()
|
843 |
+
video = video.float() / 127.5 - 1.0
|
844 |
+
return video
|
finetrainers/data/precomputation.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pathlib
|
2 |
+
from typing import Any, Callable, Dict, Iterable, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from tqdm.auto import tqdm
|
6 |
+
|
7 |
+
from .. import utils
|
8 |
+
|
9 |
+
|
10 |
+
class DistributedDataPreprocessor:
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
rank: int,
|
14 |
+
num_items: int,
|
15 |
+
processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]],
|
16 |
+
save_dir: str,
|
17 |
+
) -> None:
|
18 |
+
self._rank = rank
|
19 |
+
self._num_items = num_items
|
20 |
+
self._processor_fn = processor_fn
|
21 |
+
self._save_dir = pathlib.Path(save_dir)
|
22 |
+
|
23 |
+
self._cached_samples = []
|
24 |
+
self._preprocessed_iterator: "PreprocessedDataIterable" = None
|
25 |
+
|
26 |
+
self._save_dir.mkdir(parents=True, exist_ok=True)
|
27 |
+
|
28 |
+
subdirectories = [f for f in self._save_dir.iterdir() if f.is_dir()]
|
29 |
+
utils.delete_files(subdirectories)
|
30 |
+
|
31 |
+
def consume(
|
32 |
+
self,
|
33 |
+
data_type: str,
|
34 |
+
components: Dict[str, Any],
|
35 |
+
data_iterator,
|
36 |
+
generator: Optional[torch.Generator] = None,
|
37 |
+
cache_samples: bool = False,
|
38 |
+
use_cached_samples: bool = False,
|
39 |
+
drop_samples: bool = False,
|
40 |
+
) -> Iterable[Dict[str, Any]]:
|
41 |
+
if data_type not in self._processor_fn.keys():
|
42 |
+
raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
|
43 |
+
if cache_samples:
|
44 |
+
if use_cached_samples:
|
45 |
+
raise ValueError("Cannot cache and use cached samples at the same time.")
|
46 |
+
if drop_samples:
|
47 |
+
raise ValueError("Cannot cache and drop samples at the same time.")
|
48 |
+
|
49 |
+
for i in tqdm(range(self._num_items), desc=f"Rank {self._rank}", total=self._num_items):
|
50 |
+
if use_cached_samples:
|
51 |
+
item = self._cached_samples[i]
|
52 |
+
else:
|
53 |
+
item = next(data_iterator)
|
54 |
+
if cache_samples:
|
55 |
+
self._cached_samples.append(item)
|
56 |
+
item = self._processor_fn[data_type](**item, **components, generator=generator)
|
57 |
+
_save_item(self._rank, i, item, self._save_dir, data_type)
|
58 |
+
|
59 |
+
if drop_samples:
|
60 |
+
del self._cached_samples
|
61 |
+
self._cached_samples = []
|
62 |
+
utils.free_memory()
|
63 |
+
|
64 |
+
self._preprocessed_iterator = PreprocessedDataIterable(self._rank, self._save_dir, data_type)
|
65 |
+
return iter(self._preprocessed_iterator)
|
66 |
+
|
67 |
+
def consume_once(
|
68 |
+
self,
|
69 |
+
data_type: str,
|
70 |
+
components: Dict[str, Any],
|
71 |
+
data_iterator,
|
72 |
+
generator: Optional[torch.Generator] = None,
|
73 |
+
cache_samples: bool = False,
|
74 |
+
use_cached_samples: bool = False,
|
75 |
+
drop_samples: bool = False,
|
76 |
+
) -> Iterable[Dict[str, Any]]:
|
77 |
+
if data_type not in self._processor_fn.keys():
|
78 |
+
raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
|
79 |
+
if cache_samples:
|
80 |
+
if use_cached_samples:
|
81 |
+
raise ValueError("Cannot cache and use cached samples at the same time.")
|
82 |
+
if drop_samples:
|
83 |
+
raise ValueError("Cannot cache and drop samples at the same time.")
|
84 |
+
|
85 |
+
for i in tqdm(range(self._num_items), desc=f"Processing data on rank {self._rank}", total=self._num_items):
|
86 |
+
if use_cached_samples:
|
87 |
+
item = self._cached_samples[i]
|
88 |
+
else:
|
89 |
+
item = next(data_iterator)
|
90 |
+
if cache_samples:
|
91 |
+
self._cached_samples.append(item)
|
92 |
+
item = self._processor_fn[data_type](**item, **components, generator=generator)
|
93 |
+
_save_item(self._rank, i, item, self._save_dir, data_type)
|
94 |
+
|
95 |
+
if drop_samples:
|
96 |
+
del self._cached_samples
|
97 |
+
self._cached_samples = []
|
98 |
+
utils.free_memory()
|
99 |
+
|
100 |
+
self._preprocessed_iterator = PreprocessedOnceDataIterable(self._rank, self._save_dir, data_type)
|
101 |
+
return iter(self._preprocessed_iterator)
|
102 |
+
|
103 |
+
@property
|
104 |
+
def requires_data(self):
|
105 |
+
if self._preprocessed_iterator is None:
|
106 |
+
return True
|
107 |
+
return self._preprocessed_iterator.requires_data
|
108 |
+
|
109 |
+
|
110 |
+
class PreprocessedDataIterable:
|
111 |
+
def __init__(self, rank: int, save_dir: str, data_type: str) -> None:
|
112 |
+
self._rank = rank
|
113 |
+
self._save_dir = pathlib.Path(save_dir)
|
114 |
+
self._num_items = len(list(self._save_dir.glob(f"{data_type}-{rank}-*.pt")))
|
115 |
+
self._data_type = data_type
|
116 |
+
|
117 |
+
self._requires_data = False
|
118 |
+
|
119 |
+
def __iter__(self) -> Iterable[Dict[str, Any]]:
|
120 |
+
for i in range(self._num_items):
|
121 |
+
if i == self._num_items - 1:
|
122 |
+
self._requires_data = True
|
123 |
+
yield _load_item(self._rank, i, self._save_dir, self._data_type)
|
124 |
+
|
125 |
+
def __len__(self) -> int:
|
126 |
+
return self._num_items
|
127 |
+
|
128 |
+
@property
|
129 |
+
def requires_data(self):
|
130 |
+
return self._requires_data
|
131 |
+
|
132 |
+
|
133 |
+
class PreprocessedOnceDataIterable:
|
134 |
+
def __init__(self, rank: int, save_dir: str, data_type: str) -> None:
|
135 |
+
self._rank = rank
|
136 |
+
self._save_dir = pathlib.Path(save_dir)
|
137 |
+
self._num_items = len(list(self._save_dir.glob(f"{data_type}-{rank}-*.pt")))
|
138 |
+
self._data_type = data_type
|
139 |
+
|
140 |
+
self._requires_data = False
|
141 |
+
|
142 |
+
def __iter__(self) -> Iterable[Dict[str, Any]]:
|
143 |
+
index = 0
|
144 |
+
while True:
|
145 |
+
yield _load_item(self._rank, index, self._save_dir, self._data_type)
|
146 |
+
index = (index + 1) % self._num_items
|
147 |
+
|
148 |
+
def __len__(self) -> int:
|
149 |
+
return self._num_items
|
150 |
+
|
151 |
+
@property
|
152 |
+
def requires_data(self):
|
153 |
+
return self._requires_data
|
154 |
+
|
155 |
+
|
156 |
+
def _save_item(rank: int, index: int, item: Dict[str, Any], directory: pathlib.Path, data_type: str) -> None:
|
157 |
+
filename = directory / f"{data_type}-{rank}-{index}.pt"
|
158 |
+
torch.save(item, filename.as_posix())
|
159 |
+
|
160 |
+
|
161 |
+
def _load_item(rank: int, index: int, directory: pathlib.Path, data_type: str) -> Dict[str, Any]:
|
162 |
+
filename = directory / f"{data_type}-{rank}-{index}.pt"
|
163 |
+
return torch.load(filename.as_posix(), weights_only=True)
|
finetrainers/data/sampler.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
class ResolutionSampler:
|
7 |
+
def __init__(self, batch_size: int = 1, dim_keys: Dict[str, Tuple[int, ...]] = None) -> None:
|
8 |
+
self.batch_size = batch_size
|
9 |
+
self.dim_keys = dim_keys
|
10 |
+
assert dim_keys is not None, "dim_keys must be provided"
|
11 |
+
|
12 |
+
self._chosen_leader_key = None
|
13 |
+
self._unsatisfied_buckets: Dict[Tuple[int, ...], List[Dict[Any, Any]]] = {}
|
14 |
+
self._satisfied_buckets: List[Dict[Any, Any]] = []
|
15 |
+
|
16 |
+
def consume(self, *dict_items: Dict[Any, Any]) -> None:
|
17 |
+
if self._chosen_leader_key is None:
|
18 |
+
self._determine_leader_item(*dict_items)
|
19 |
+
self._update_buckets(*dict_items)
|
20 |
+
|
21 |
+
def get_batch(self) -> List[Dict[str, Any]]:
|
22 |
+
return list(zip(*self._satisfied_buckets.pop(-1)))
|
23 |
+
|
24 |
+
@property
|
25 |
+
def is_ready(self) -> bool:
|
26 |
+
return len(self._satisfied_buckets) > 0
|
27 |
+
|
28 |
+
def _determine_leader_item(self, *dict_items: Dict[Any, Any]) -> None:
|
29 |
+
num_observed = 0
|
30 |
+
for dict_item in dict_items:
|
31 |
+
for key in self.dim_keys.keys():
|
32 |
+
if key in dict_item.keys():
|
33 |
+
self._chosen_leader_key = key
|
34 |
+
if not torch.is_tensor(dict_item[key]):
|
35 |
+
raise ValueError(f"Leader key {key} must be a tensor")
|
36 |
+
num_observed += 1
|
37 |
+
if num_observed > 1:
|
38 |
+
raise ValueError(
|
39 |
+
f"Only one leader key is allowed in provided list of data dictionaries. Found {num_observed} leader keys"
|
40 |
+
)
|
41 |
+
if self._chosen_leader_key is None:
|
42 |
+
raise ValueError("No leader key found in provided list of data dictionaries")
|
43 |
+
|
44 |
+
def _update_buckets(self, *dict_items: Dict[Any, Any]) -> None:
|
45 |
+
chosen_value = [
|
46 |
+
dict_item[self._chosen_leader_key]
|
47 |
+
for dict_item in dict_items
|
48 |
+
if self._chosen_leader_key in dict_item.keys()
|
49 |
+
]
|
50 |
+
if len(chosen_value) == 0:
|
51 |
+
raise ValueError(f"Leader key {self._chosen_leader_key} not found in provided list of data dictionaries")
|
52 |
+
chosen_value = chosen_value[0]
|
53 |
+
dims = tuple(chosen_value.size(x) for x in self.dim_keys[self._chosen_leader_key])
|
54 |
+
if dims not in self._unsatisfied_buckets:
|
55 |
+
self._unsatisfied_buckets[dims] = []
|
56 |
+
self._unsatisfied_buckets[dims].append(dict_items)
|
57 |
+
if len(self._unsatisfied_buckets[dims]) == self.batch_size:
|
58 |
+
self._satisfied_buckets.append(self._unsatisfied_buckets.pop(dims))
|
finetrainers/data/utils.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pathlib
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
def find_files(root: str, pattern: str, depth: int = 0) -> List[str]:
|
6 |
+
root_path = pathlib.Path(root)
|
7 |
+
result_files = []
|
8 |
+
|
9 |
+
def within_depth(path: pathlib.Path) -> bool:
|
10 |
+
return len(path.relative_to(root_path).parts) <= depth
|
11 |
+
|
12 |
+
if depth == 0:
|
13 |
+
result_files.extend([str(file) for file in root_path.glob(pattern)])
|
14 |
+
else:
|
15 |
+
# rglob matches all levels, but we filter by depth
|
16 |
+
for file in root_path.rglob(pattern):
|
17 |
+
if file.is_file() and within_depth(file.parent):
|
18 |
+
result_files.append(str(file))
|
19 |
+
|
20 |
+
return result_files
|
finetrainers/dataset.py
DELETED
@@ -1,564 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import random
|
4 |
-
from pathlib import Path
|
5 |
-
from typing import Any, Dict, List, Optional, Tuple
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import pandas as pd
|
9 |
-
import torch
|
10 |
-
import torchvision.transforms as TT
|
11 |
-
import torchvision.transforms.functional as TTF
|
12 |
-
from accelerate.logging import get_logger
|
13 |
-
from torch.utils.data import Dataset, Sampler
|
14 |
-
from torchvision import transforms
|
15 |
-
from torchvision.transforms import InterpolationMode
|
16 |
-
from torchvision.transforms.functional import resize
|
17 |
-
|
18 |
-
import gc
|
19 |
-
import time
|
20 |
-
import resource
|
21 |
-
|
22 |
-
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
|
23 |
-
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
|
24 |
-
import decord # isort:skip
|
25 |
-
|
26 |
-
decord.bridge.set_bridge("torch")
|
27 |
-
|
28 |
-
from .constants import ( # noqa
|
29 |
-
COMMON_LLM_START_PHRASES,
|
30 |
-
PRECOMPUTED_CONDITIONS_DIR_NAME,
|
31 |
-
PRECOMPUTED_DIR_NAME,
|
32 |
-
PRECOMPUTED_LATENTS_DIR_NAME,
|
33 |
-
)
|
34 |
-
|
35 |
-
# Decord is causing us some issues!
|
36 |
-
# Let's try to increase file descriptor limits to avoid this error:
|
37 |
-
#
|
38 |
-
# decord._ffi.base.DECORDError: Resource temporarily unavailable
|
39 |
-
try:
|
40 |
-
soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
41 |
-
print(f"Current file descriptor limits: soft={soft}, hard={hard}")
|
42 |
-
|
43 |
-
# Try to increase to hard limit if possible
|
44 |
-
if soft < hard:
|
45 |
-
resource.setrlimit(resource.RLIMIT_NOFILE, (hard, hard))
|
46 |
-
new_soft, new_hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
47 |
-
print(f"Updated file descriptor limits: soft={new_soft}, hard={new_hard}")
|
48 |
-
except Exception as e:
|
49 |
-
print(f"Could not check or update file descriptor limits: {e}")
|
50 |
-
|
51 |
-
logger = get_logger(__name__)
|
52 |
-
|
53 |
-
# TODO(aryan): This needs a refactor with separation of concerns.
|
54 |
-
# Images should be handled separately. Videos should be handled separately.
|
55 |
-
# Loading should be handled separately.
|
56 |
-
# Preprocessing (aspect ratio, resizing) should be handled separately.
|
57 |
-
# URL loading should be handled.
|
58 |
-
# Parquet format should be handled.
|
59 |
-
# Loading from ZIP should be handled.
|
60 |
-
class ImageOrVideoDataset(Dataset):
|
61 |
-
def __init__(
|
62 |
-
self,
|
63 |
-
data_root: str,
|
64 |
-
caption_column: str,
|
65 |
-
video_column: str,
|
66 |
-
resolution_buckets: List[Tuple[int, int, int]],
|
67 |
-
dataset_file: Optional[str] = None,
|
68 |
-
id_token: Optional[str] = None,
|
69 |
-
remove_llm_prefixes: bool = False,
|
70 |
-
) -> None:
|
71 |
-
super().__init__()
|
72 |
-
|
73 |
-
self.data_root = Path(data_root)
|
74 |
-
self.dataset_file = dataset_file
|
75 |
-
self.caption_column = caption_column
|
76 |
-
self.video_column = video_column
|
77 |
-
self.id_token = f"{id_token.strip()} " if id_token else ""
|
78 |
-
self.resolution_buckets = resolution_buckets
|
79 |
-
|
80 |
-
# Four methods of loading data are supported.
|
81 |
-
# - Using a CSV: caption_column and video_column must be some column in the CSV. One could
|
82 |
-
# make use of other columns too, such as a motion score or aesthetic score, by modifying the
|
83 |
-
# logic in CSV processing.
|
84 |
-
# - Using two files containing line-separate captions and relative paths to videos.
|
85 |
-
# - Using a JSON file containing a list of dictionaries, where each dictionary has a `caption_column` and `video_column` key.
|
86 |
-
# - Using a JSONL file containing a list of line-separated dictionaries, where each dictionary has a `caption_column` and `video_column` key.
|
87 |
-
# For a more detailed explanation about preparing dataset format, checkout the README.
|
88 |
-
if dataset_file is None:
|
89 |
-
(
|
90 |
-
self.prompts,
|
91 |
-
self.video_paths,
|
92 |
-
) = self._load_dataset_from_local_path()
|
93 |
-
elif dataset_file.endswith(".csv"):
|
94 |
-
(
|
95 |
-
self.prompts,
|
96 |
-
self.video_paths,
|
97 |
-
) = self._load_dataset_from_csv()
|
98 |
-
elif dataset_file.endswith(".json"):
|
99 |
-
(
|
100 |
-
self.prompts,
|
101 |
-
self.video_paths,
|
102 |
-
) = self._load_dataset_from_json()
|
103 |
-
elif dataset_file.endswith(".jsonl"):
|
104 |
-
(
|
105 |
-
self.prompts,
|
106 |
-
self.video_paths,
|
107 |
-
) = self._load_dataset_from_jsonl()
|
108 |
-
else:
|
109 |
-
raise ValueError(
|
110 |
-
"Expected `--dataset_file` to be a path to a CSV file or a directory containing line-separated text prompts and video paths."
|
111 |
-
)
|
112 |
-
|
113 |
-
if len(self.video_paths) != len(self.prompts):
|
114 |
-
raise ValueError(
|
115 |
-
f"Expected length of prompts and videos to be the same but found {len(self.prompts)=} and {len(self.video_paths)=}. Please ensure that the number of caption prompts and videos match in your dataset."
|
116 |
-
)
|
117 |
-
|
118 |
-
# Clean LLM start phrases
|
119 |
-
if remove_llm_prefixes:
|
120 |
-
for i in range(len(self.prompts)):
|
121 |
-
self.prompts[i] = self.prompts[i].strip()
|
122 |
-
for phrase in COMMON_LLM_START_PHRASES:
|
123 |
-
if self.prompts[i].startswith(phrase):
|
124 |
-
self.prompts[i] = self.prompts[i].removeprefix(phrase).strip()
|
125 |
-
|
126 |
-
self.video_transforms = transforms.Compose(
|
127 |
-
[
|
128 |
-
transforms.Lambda(self.scale_transform),
|
129 |
-
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
130 |
-
]
|
131 |
-
)
|
132 |
-
|
133 |
-
@staticmethod
|
134 |
-
def scale_transform(x):
|
135 |
-
return x / 255.0
|
136 |
-
|
137 |
-
def __len__(self) -> int:
|
138 |
-
return len(self.video_paths)
|
139 |
-
|
140 |
-
def __getitem__(self, index: int) -> Dict[str, Any]:
|
141 |
-
if isinstance(index, list):
|
142 |
-
# Here, index is actually a list of data objects that we need to return.
|
143 |
-
# The BucketSampler should ideally return indices. But, in the sampler, we'd like
|
144 |
-
# to have information about num_frames, height and width. Since this is not stored
|
145 |
-
# as metadata, we need to read the video to get this information. You could read this
|
146 |
-
# information without loading the full video in memory, but we do it anyway. In order
|
147 |
-
# to not load the video twice (once to get the metadata, and once to return the loaded video
|
148 |
-
# based on sampled indices), we cache it in the BucketSampler. When the sampler is
|
149 |
-
# to yield, we yield the cache data instead of indices. So, this special check ensures
|
150 |
-
# that data is not loaded a second time. PRs are welcome for improvements.
|
151 |
-
return index
|
152 |
-
|
153 |
-
prompt = self.id_token + self.prompts[index]
|
154 |
-
|
155 |
-
video_path: Path = self.video_paths[index]
|
156 |
-
if video_path.suffix.lower() in [".png", ".jpg", ".jpeg"]:
|
157 |
-
video = self._preprocess_image(video_path)
|
158 |
-
else:
|
159 |
-
video = self._preprocess_video(video_path)
|
160 |
-
|
161 |
-
return {
|
162 |
-
"prompt": prompt,
|
163 |
-
"video": video,
|
164 |
-
"video_metadata": {
|
165 |
-
"num_frames": video.shape[0],
|
166 |
-
"height": video.shape[2],
|
167 |
-
"width": video.shape[3],
|
168 |
-
},
|
169 |
-
}
|
170 |
-
|
171 |
-
def _load_dataset_from_local_path(self) -> Tuple[List[str], List[str]]:
|
172 |
-
if not self.data_root.exists():
|
173 |
-
raise ValueError("Root folder for videos does not exist")
|
174 |
-
|
175 |
-
prompt_path = self.data_root.joinpath(self.caption_column)
|
176 |
-
video_path = self.data_root.joinpath(self.video_column)
|
177 |
-
|
178 |
-
if not prompt_path.exists() or not prompt_path.is_file():
|
179 |
-
raise ValueError(
|
180 |
-
"Expected `--caption_column` to be path to a file in `--data_root` containing line-separated text prompts."
|
181 |
-
)
|
182 |
-
if not video_path.exists() or not video_path.is_file():
|
183 |
-
raise ValueError(
|
184 |
-
"Expected `--video_column` to be path to a file in `--data_root` containing line-separated paths to video data in the same directory."
|
185 |
-
)
|
186 |
-
|
187 |
-
with open(prompt_path, "r", encoding="utf-8") as file:
|
188 |
-
prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
|
189 |
-
with open(video_path, "r", encoding="utf-8") as file:
|
190 |
-
video_paths = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]
|
191 |
-
|
192 |
-
if any(not path.is_file() for path in video_paths):
|
193 |
-
raise ValueError(
|
194 |
-
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
|
195 |
-
)
|
196 |
-
|
197 |
-
return prompts, video_paths
|
198 |
-
|
199 |
-
def _load_dataset_from_csv(self) -> Tuple[List[str], List[str]]:
|
200 |
-
df = pd.read_csv(self.dataset_file)
|
201 |
-
prompts = df[self.caption_column].tolist()
|
202 |
-
video_paths = df[self.video_column].tolist()
|
203 |
-
video_paths = [self.data_root.joinpath(line.strip()) for line in video_paths]
|
204 |
-
|
205 |
-
if any(not path.is_file() for path in video_paths):
|
206 |
-
raise ValueError(
|
207 |
-
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
|
208 |
-
)
|
209 |
-
|
210 |
-
return prompts, video_paths
|
211 |
-
|
212 |
-
def _load_dataset_from_json(self) -> Tuple[List[str], List[str]]:
|
213 |
-
with open(self.dataset_file, "r", encoding="utf-8") as file:
|
214 |
-
data = json.load(file)
|
215 |
-
|
216 |
-
prompts = [entry[self.caption_column] for entry in data]
|
217 |
-
video_paths = [self.data_root.joinpath(entry[self.video_column].strip()) for entry in data]
|
218 |
-
|
219 |
-
if any(not path.is_file() for path in video_paths):
|
220 |
-
raise ValueError(
|
221 |
-
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
|
222 |
-
)
|
223 |
-
|
224 |
-
return prompts, video_paths
|
225 |
-
|
226 |
-
def _load_dataset_from_jsonl(self) -> Tuple[List[str], List[str]]:
|
227 |
-
with open(self.dataset_file, "r", encoding="utf-8") as file:
|
228 |
-
data = [json.loads(line) for line in file]
|
229 |
-
|
230 |
-
prompts = [entry[self.caption_column] for entry in data]
|
231 |
-
video_paths = [self.data_root.joinpath(entry[self.video_column].strip()) for entry in data]
|
232 |
-
|
233 |
-
if any(not path.is_file() for path in video_paths):
|
234 |
-
raise ValueError(
|
235 |
-
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
|
236 |
-
)
|
237 |
-
|
238 |
-
return prompts, video_paths
|
239 |
-
|
240 |
-
def _preprocess_image(self, path: Path) -> torch.Tensor:
|
241 |
-
# TODO(aryan): Support alpha channel in future by whitening background
|
242 |
-
image = TTF.Image.open(path.as_posix()).convert("RGB")
|
243 |
-
image = TTF.to_tensor(image)
|
244 |
-
image = image * 2.0 - 1.0
|
245 |
-
image = image.unsqueeze(0).contiguous() # [C, H, W] -> [1, C, H, W] (1-frame video)
|
246 |
-
return image
|
247 |
-
|
248 |
-
def _preprocess_video(self, path: Path) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
249 |
-
"""
|
250 |
-
Loads a single video, or latent and prompt embedding, based on initialization parameters.
|
251 |
-
Returns a [F, C, H, W] video tensor.
|
252 |
-
"""
|
253 |
-
max_retries = 3
|
254 |
-
retry_delay = 1.0 # seconds
|
255 |
-
|
256 |
-
for attempt in range(max_retries):
|
257 |
-
try:
|
258 |
-
# Create video reader
|
259 |
-
video_reader = decord.VideoReader(uri=path.as_posix())
|
260 |
-
video_num_frames = len(video_reader)
|
261 |
-
|
262 |
-
# Process frames
|
263 |
-
indices = list(range(0, video_num_frames, video_num_frames // self.max_num_frames))
|
264 |
-
frames = video_reader.get_batch(indices)
|
265 |
-
frames = frames[: self.max_num_frames].float()
|
266 |
-
frames = frames.permute(0, 3, 1, 2).contiguous()
|
267 |
-
frames = torch.stack([self.video_transforms(frame) for frame in frames], dim=0)
|
268 |
-
|
269 |
-
# Explicitly clean up resources
|
270 |
-
del video_reader
|
271 |
-
|
272 |
-
# Force garbage collection occasionally
|
273 |
-
if random.random() < 0.05: # 5% chance
|
274 |
-
gc.collect()
|
275 |
-
|
276 |
-
return frames
|
277 |
-
|
278 |
-
except decord._ffi.base.DECORDError as e:
|
279 |
-
# Log the error
|
280 |
-
error_msg = str(e)
|
281 |
-
if "Resource temporarily unavailable" in error_msg and attempt < max_retries - 1:
|
282 |
-
logger.warning(f"Retry {attempt+1}/{max_retries} loading video {path}: {error_msg}")
|
283 |
-
|
284 |
-
# Clean up and wait before retrying
|
285 |
-
gc.collect()
|
286 |
-
time.sleep(retry_delay * (attempt + 1)) # Increasing backoff
|
287 |
-
else:
|
288 |
-
# Either not a resource error or we've run out of retries
|
289 |
-
logger.error(f"Failed to load video {path} after {attempt+1} attempts: {error_msg}")
|
290 |
-
raise RuntimeError(f"Failed to load video after {max_retries} attempts: {error_msg}")
|
291 |
-
|
292 |
-
|
293 |
-
class ImageOrVideoDatasetWithResizing(ImageOrVideoDataset):
|
294 |
-
def __init__(self, *args, **kwargs) -> None:
|
295 |
-
super().__init__(*args, **kwargs)
|
296 |
-
|
297 |
-
self.max_num_frames = max(self.resolution_buckets, key=lambda x: x[0])[0]
|
298 |
-
|
299 |
-
def _preprocess_image(self, path: Path) -> torch.Tensor:
|
300 |
-
# TODO(aryan): Support alpha channel in future by whitening background
|
301 |
-
image = TTF.Image.open(path.as_posix()).convert("RGB")
|
302 |
-
image = TTF.to_tensor(image)
|
303 |
-
|
304 |
-
nearest_res = self._find_nearest_resolution(image.shape[1], image.shape[2])
|
305 |
-
image = resize(image, nearest_res)
|
306 |
-
|
307 |
-
image = image * 2.0 - 1.0
|
308 |
-
image = image.unsqueeze(0).contiguous()
|
309 |
-
return image
|
310 |
-
|
311 |
-
def _preprocess_video(self, path: Path) -> torch.Tensor:
|
312 |
-
max_retries = 3
|
313 |
-
retry_delay = 1.0 # seconds
|
314 |
-
|
315 |
-
for attempt in range(max_retries):
|
316 |
-
try:
|
317 |
-
# Create video reader
|
318 |
-
video_reader = decord.VideoReader(uri=path.as_posix())
|
319 |
-
video_num_frames = len(video_reader)
|
320 |
-
|
321 |
-
# Find appropriate bucket for the video
|
322 |
-
video_buckets = [bucket for bucket in self.resolution_buckets if bucket[0] <= video_num_frames]
|
323 |
-
|
324 |
-
if not video_buckets:
|
325 |
-
_, h, w = self.resolution_buckets[0]
|
326 |
-
video_buckets = [(1, h, w)]
|
327 |
-
|
328 |
-
nearest_frame_bucket = min(
|
329 |
-
video_buckets,
|
330 |
-
key=lambda x: abs(x[0] - min(video_num_frames, self.max_num_frames)),
|
331 |
-
default=video_buckets[0],
|
332 |
-
)[0]
|
333 |
-
|
334 |
-
# Extract and process frames
|
335 |
-
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
|
336 |
-
frames = video_reader.get_batch(frame_indices)
|
337 |
-
frames = frames[:nearest_frame_bucket].float()
|
338 |
-
frames = frames.permute(0, 3, 1, 2).contiguous()
|
339 |
-
|
340 |
-
nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
|
341 |
-
frames_resized = torch.stack([resize(frame, nearest_res) for frame in frames], dim=0)
|
342 |
-
frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
|
343 |
-
|
344 |
-
# Explicitly clean up resources
|
345 |
-
del video_reader
|
346 |
-
|
347 |
-
# Force garbage collection occasionally
|
348 |
-
if random.random() < 0.05: # 5% chance
|
349 |
-
gc.collect()
|
350 |
-
|
351 |
-
return frames
|
352 |
-
|
353 |
-
except decord._ffi.base.DECORDError as e:
|
354 |
-
# Log the error
|
355 |
-
error_msg = str(e)
|
356 |
-
if "Resource temporarily unavailable" in error_msg and attempt < max_retries - 1:
|
357 |
-
logger.warning(f"Retry {attempt+1}/{max_retries} loading video {path}: {error_msg}")
|
358 |
-
|
359 |
-
# Clean up and wait before retrying
|
360 |
-
gc.collect()
|
361 |
-
time.sleep(retry_delay * (attempt + 1)) # Increasing backoff
|
362 |
-
else:
|
363 |
-
# Either not a resource error or we've run out of retries
|
364 |
-
logger.error(f"Failed to load video {path} after {attempt+1} attempts: {error_msg}")
|
365 |
-
raise RuntimeError(f"Failed to load video after {max_retries} attempts: {error_msg}")
|
366 |
-
|
367 |
-
def _find_nearest_resolution(self, height, width):
|
368 |
-
nearest_res = min(self.resolution_buckets, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
|
369 |
-
return nearest_res[1], nearest_res[2]
|
370 |
-
|
371 |
-
|
372 |
-
class ImageOrVideoDatasetWithResizeAndRectangleCrop(ImageOrVideoDataset):
|
373 |
-
def __init__(self, video_reshape_mode: str = "center", *args, **kwargs) -> None:
|
374 |
-
super().__init__(*args, **kwargs)
|
375 |
-
|
376 |
-
self.video_reshape_mode = video_reshape_mode
|
377 |
-
self.max_num_frames = max(self.resolution_buckets, key=lambda x: x[0])[0]
|
378 |
-
|
379 |
-
def _resize_for_rectangle_crop(self, arr, image_size):
|
380 |
-
reshape_mode = self.video_reshape_mode
|
381 |
-
if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
|
382 |
-
arr = resize(
|
383 |
-
arr,
|
384 |
-
size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
|
385 |
-
interpolation=InterpolationMode.BICUBIC,
|
386 |
-
)
|
387 |
-
else:
|
388 |
-
arr = resize(
|
389 |
-
arr,
|
390 |
-
size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
|
391 |
-
interpolation=InterpolationMode.BICUBIC,
|
392 |
-
)
|
393 |
-
|
394 |
-
h, w = arr.shape[2], arr.shape[3]
|
395 |
-
arr = arr.squeeze(0)
|
396 |
-
|
397 |
-
delta_h = h - image_size[0]
|
398 |
-
delta_w = w - image_size[1]
|
399 |
-
|
400 |
-
if reshape_mode == "random" or reshape_mode == "none":
|
401 |
-
top = np.random.randint(0, delta_h + 1)
|
402 |
-
left = np.random.randint(0, delta_w + 1)
|
403 |
-
elif reshape_mode == "center":
|
404 |
-
top, left = delta_h // 2, delta_w // 2
|
405 |
-
else:
|
406 |
-
raise NotImplementedError
|
407 |
-
arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
|
408 |
-
return arr
|
409 |
-
|
410 |
-
def _preprocess_video(self, path: Path) -> torch.Tensor:
|
411 |
-
max_retries = 3
|
412 |
-
retry_delay = 1.0 # seconds
|
413 |
-
|
414 |
-
for attempt in range(max_retries):
|
415 |
-
try:
|
416 |
-
# Create video reader
|
417 |
-
video_reader = decord.VideoReader(uri=path.as_posix())
|
418 |
-
video_num_frames = len(video_reader)
|
419 |
-
|
420 |
-
# Find appropriate bucket for the video
|
421 |
-
video_buckets = [bucket for bucket in self.resolution_buckets if bucket[0] <= video_num_frames]
|
422 |
-
|
423 |
-
if not video_buckets:
|
424 |
-
_, h, w = self.resolution_buckets[0]
|
425 |
-
video_buckets = [(1, h, w)]
|
426 |
-
|
427 |
-
nearest_frame_bucket = min(
|
428 |
-
video_buckets,
|
429 |
-
key=lambda x: abs(x[0] - min(video_num_frames, self.max_num_frames)),
|
430 |
-
default=video_buckets[0],
|
431 |
-
)[0]
|
432 |
-
|
433 |
-
# Extract and process frames
|
434 |
-
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
|
435 |
-
frames = video_reader.get_batch(frame_indices)
|
436 |
-
frames = frames[:nearest_frame_bucket].float()
|
437 |
-
frames = frames.permute(0, 3, 1, 2).contiguous()
|
438 |
-
|
439 |
-
# Fix: Change self.resolutions to self.resolution_buckets to match the class attribute
|
440 |
-
nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
|
441 |
-
frames_resized = self._resize_for_rectangle_crop(frames, nearest_res)
|
442 |
-
frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
|
443 |
-
|
444 |
-
# Explicitly clean up resources
|
445 |
-
del video_reader
|
446 |
-
|
447 |
-
# Force garbage collection occasionally
|
448 |
-
if random.random() < 0.05: # 5% chance
|
449 |
-
gc.collect()
|
450 |
-
|
451 |
-
return frames
|
452 |
-
|
453 |
-
except decord._ffi.base.DECORDError as e:
|
454 |
-
# Log the error
|
455 |
-
error_msg = str(e)
|
456 |
-
if "Resource temporarily unavailable" in error_msg and attempt < max_retries - 1:
|
457 |
-
logger.warning(f"Retry {attempt+1}/{max_retries} loading video {path}: {error_msg}")
|
458 |
-
|
459 |
-
# Clean up and wait before retrying
|
460 |
-
gc.collect()
|
461 |
-
time.sleep(retry_delay * (attempt + 1)) # Increasing backoff
|
462 |
-
else:
|
463 |
-
# Either not a resource error or we've run out of retries
|
464 |
-
logger.error(f"Failed to load video {path} after {attempt+1} attempts: {error_msg}")
|
465 |
-
raise RuntimeError(f"Failed to load video after {max_retries} attempts: {error_msg}")
|
466 |
-
|
467 |
-
def _find_nearest_resolution(self, height, width):
|
468 |
-
nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
|
469 |
-
return nearest_res[1], nearest_res[2]
|
470 |
-
|
471 |
-
|
472 |
-
class PrecomputedDataset(Dataset):
|
473 |
-
def __init__(self, data_root: str, model_name: str = None, cleaned_model_id: str = None) -> None:
|
474 |
-
super().__init__()
|
475 |
-
|
476 |
-
self.data_root = Path(data_root)
|
477 |
-
|
478 |
-
if model_name and cleaned_model_id:
|
479 |
-
precomputation_dir = self.data_root / f"{model_name}_{cleaned_model_id}_{PRECOMPUTED_DIR_NAME}"
|
480 |
-
self.latents_path = precomputation_dir / PRECOMPUTED_LATENTS_DIR_NAME
|
481 |
-
self.conditions_path = precomputation_dir / PRECOMPUTED_CONDITIONS_DIR_NAME
|
482 |
-
else:
|
483 |
-
self.latents_path = self.data_root / PRECOMPUTED_DIR_NAME / PRECOMPUTED_LATENTS_DIR_NAME
|
484 |
-
self.conditions_path = self.data_root / PRECOMPUTED_DIR_NAME / PRECOMPUTED_CONDITIONS_DIR_NAME
|
485 |
-
|
486 |
-
self.latent_conditions = sorted(os.listdir(self.latents_path))
|
487 |
-
self.text_conditions = sorted(os.listdir(self.conditions_path))
|
488 |
-
|
489 |
-
assert len(self.latent_conditions) == len(self.text_conditions), "Number of captions and videos do not match"
|
490 |
-
|
491 |
-
def __len__(self) -> int:
|
492 |
-
return len(self.latent_conditions)
|
493 |
-
|
494 |
-
def __getitem__(self, index: int) -> Dict[str, Any]:
|
495 |
-
conditions = {}
|
496 |
-
latent_path = self.latents_path / self.latent_conditions[index]
|
497 |
-
condition_path = self.conditions_path / self.text_conditions[index]
|
498 |
-
conditions["latent_conditions"] = torch.load(latent_path, map_location="cpu", weights_only=True)
|
499 |
-
conditions["text_conditions"] = torch.load(condition_path, map_location="cpu", weights_only=True)
|
500 |
-
return conditions
|
501 |
-
|
502 |
-
|
503 |
-
class BucketSampler(Sampler):
|
504 |
-
r"""
|
505 |
-
PyTorch Sampler that groups 3D data by height, width and frames.
|
506 |
-
|
507 |
-
Args:
|
508 |
-
data_source (`ImageOrVideoDataset`):
|
509 |
-
A PyTorch dataset object that is an instance of `ImageOrVideoDataset`.
|
510 |
-
batch_size (`int`, defaults to `8`):
|
511 |
-
The batch size to use for training.
|
512 |
-
shuffle (`bool`, defaults to `True`):
|
513 |
-
Whether or not to shuffle the data in each batch before dispatching to dataloader.
|
514 |
-
drop_last (`bool`, defaults to `False`):
|
515 |
-
Whether or not to drop incomplete buckets of data after completely iterating over all data
|
516 |
-
in the dataset. If set to True, only batches that have `batch_size` number of entries will
|
517 |
-
be yielded. If set to False, it is guaranteed that all data in the dataset will be processed
|
518 |
-
and batches that do not have `batch_size` number of entries will also be yielded.
|
519 |
-
"""
|
520 |
-
|
521 |
-
def __init__(
|
522 |
-
self, data_source: ImageOrVideoDataset, batch_size: int = 8, shuffle: bool = True, drop_last: bool = False
|
523 |
-
) -> None:
|
524 |
-
self.data_source = data_source
|
525 |
-
self.batch_size = batch_size
|
526 |
-
self.shuffle = shuffle
|
527 |
-
self.drop_last = drop_last
|
528 |
-
|
529 |
-
self.buckets = {resolution: [] for resolution in data_source.resolution_buckets}
|
530 |
-
|
531 |
-
self._raised_warning_for_drop_last = False
|
532 |
-
|
533 |
-
def __len__(self):
|
534 |
-
if self.drop_last and not self._raised_warning_for_drop_last:
|
535 |
-
self._raised_warning_for_drop_last = True
|
536 |
-
logger.warning(
|
537 |
-
"Calculating the length for bucket sampler is not possible when `drop_last` is set to True. This may cause problems when setting the number of epochs used for training."
|
538 |
-
)
|
539 |
-
return (len(self.data_source) + self.batch_size - 1) // self.batch_size
|
540 |
-
|
541 |
-
def __iter__(self):
|
542 |
-
for index, data in enumerate(self.data_source):
|
543 |
-
video_metadata = data["video_metadata"]
|
544 |
-
f, h, w = video_metadata["num_frames"], video_metadata["height"], video_metadata["width"]
|
545 |
-
|
546 |
-
self.buckets[(f, h, w)].append(data)
|
547 |
-
if len(self.buckets[(f, h, w)]) == self.batch_size:
|
548 |
-
if self.shuffle:
|
549 |
-
random.shuffle(self.buckets[(f, h, w)])
|
550 |
-
yield self.buckets[(f, h, w)]
|
551 |
-
del self.buckets[(f, h, w)]
|
552 |
-
self.buckets[(f, h, w)] = []
|
553 |
-
|
554 |
-
if self.drop_last:
|
555 |
-
return
|
556 |
-
|
557 |
-
for fhw, bucket in list(self.buckets.items()):
|
558 |
-
if len(bucket) == 0:
|
559 |
-
continue
|
560 |
-
if self.shuffle:
|
561 |
-
random.shuffle(bucket)
|
562 |
-
yield bucket
|
563 |
-
del self.buckets[fhw]
|
564 |
-
self.buckets[fhw] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/functional/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .diffusion import flow_match_target, flow_match_xt
|
2 |
+
from .image import (
|
3 |
+
bicubic_resize_image,
|
4 |
+
center_crop_image,
|
5 |
+
find_nearest_resolution_image,
|
6 |
+
resize_crop_image,
|
7 |
+
resize_to_nearest_bucket_image,
|
8 |
+
)
|
9 |
+
from .text import dropout_caption, dropout_embeddings_to_zero, remove_prefix
|
10 |
+
from .video import (
|
11 |
+
bicubic_resize_video,
|
12 |
+
center_crop_video,
|
13 |
+
find_nearest_video_resolution,
|
14 |
+
resize_crop_video,
|
15 |
+
resize_to_nearest_bucket_video,
|
16 |
+
)
|
finetrainers/functional/diffusion.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def flow_match_xt(x0: torch.Tensor, n: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
5 |
+
r"""Forward process of flow matching."""
|
6 |
+
return (1.0 - t) * x0 + t * n
|
7 |
+
|
8 |
+
|
9 |
+
def flow_match_target(n: torch.Tensor, x0: torch.Tensor) -> torch.Tensor:
|
10 |
+
r"""Loss target for flow matching."""
|
11 |
+
return n - x0
|
finetrainers/functional/image.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Literal, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
def center_crop_image(image: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
8 |
+
num_channels, height, width = image.shape
|
9 |
+
crop_h, crop_w = size
|
10 |
+
top = (height - crop_h) // 2
|
11 |
+
left = (width - crop_w) // 2
|
12 |
+
return image[:, top : top + crop_h, left : left + crop_w]
|
13 |
+
|
14 |
+
|
15 |
+
def resize_crop_image(image: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
16 |
+
num_channels, height, width = image.shape
|
17 |
+
target_h, target_w = size
|
18 |
+
scale = max(target_h / height, target_w / width)
|
19 |
+
new_h, new_w = int(height * scale), int(width * scale)
|
20 |
+
image = F.interpolate(image, size=(new_h, new_w), mode="bilinear", align_corners=False)
|
21 |
+
return center_crop_image(image, size)
|
22 |
+
|
23 |
+
|
24 |
+
def bicubic_resize_image(image: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
25 |
+
return F.interpolate(image, size=size, mode="bicubic", align_corners=False)
|
26 |
+
|
27 |
+
|
28 |
+
def find_nearest_resolution_image(image: torch.Tensor, resolution_buckets: List[Tuple[int, int]]) -> Tuple[int, int]:
|
29 |
+
num_channels, height, width = image.shape
|
30 |
+
aspect_ratio = width / height
|
31 |
+
|
32 |
+
def aspect_ratio_diff(bucket):
|
33 |
+
return abs((bucket[1] / bucket[0]) - aspect_ratio)
|
34 |
+
|
35 |
+
return min(resolution_buckets, key=aspect_ratio_diff)
|
36 |
+
|
37 |
+
|
38 |
+
def resize_to_nearest_bucket_image(
|
39 |
+
image: torch.Tensor,
|
40 |
+
resolution_buckets: List[Tuple[int, int]],
|
41 |
+
resize_mode: Literal["center_crop", "resize_crop", "bicubic"] = "bicubic",
|
42 |
+
) -> torch.Tensor:
|
43 |
+
target_size = find_nearest_resolution_image(image, resolution_buckets)
|
44 |
+
|
45 |
+
if resize_mode == "center_crop":
|
46 |
+
return center_crop_image(image, target_size)
|
47 |
+
elif resize_mode == "resize_crop":
|
48 |
+
return resize_crop_image(image, target_size)
|
49 |
+
elif resize_mode == "bicubic":
|
50 |
+
return bicubic_resize_image(image, target_size)
|
51 |
+
else:
|
52 |
+
raise ValueError(
|
53 |
+
f"Invalid resize_mode: {resize_mode}. Choose from 'center_crop', 'resize_crop', or 'bicubic'."
|
54 |
+
)
|
finetrainers/functional/text.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from typing import List, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
def dropout_caption(caption: Union[str, List[str]], dropout_p: float = 0) -> Union[str, List[str]]:
|
8 |
+
if random.random() >= dropout_p:
|
9 |
+
return caption
|
10 |
+
if isinstance(caption, str):
|
11 |
+
return ""
|
12 |
+
return [""] * len(caption)
|
13 |
+
|
14 |
+
|
15 |
+
def dropout_embeddings_to_zero(embed: torch.Tensor, dropout_p: float = 0) -> torch.Tensor:
|
16 |
+
if random.random() >= dropout_p:
|
17 |
+
return embed
|
18 |
+
embed = torch.zeros_like(embed)
|
19 |
+
return embed
|
20 |
+
|
21 |
+
|
22 |
+
def remove_prefix(text: str, prefixes: List[str]) -> str:
|
23 |
+
for prefix in prefixes:
|
24 |
+
if text.startswith(prefix):
|
25 |
+
return text.removeprefix(prefix).strip()
|
26 |
+
return text
|
finetrainers/functional/video.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Literal, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
def center_crop_video(video: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
8 |
+
num_frames, num_channels, height, width = video.shape
|
9 |
+
crop_h, crop_w = size
|
10 |
+
top = (height - crop_h) // 2
|
11 |
+
left = (width - crop_w) // 2
|
12 |
+
return video[:, :, top : top + crop_h, left : left + crop_w]
|
13 |
+
|
14 |
+
|
15 |
+
def resize_crop_video(video: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
16 |
+
num_frames, num_channels, height, width = video.shape
|
17 |
+
target_h, target_w = size
|
18 |
+
scale = max(target_h / height, target_w / width)
|
19 |
+
new_h, new_w = int(height * scale), int(width * scale)
|
20 |
+
video = F.interpolate(video, size=(new_h, new_w), mode="bilinear", align_corners=False)
|
21 |
+
return center_crop_video(video, size)
|
22 |
+
|
23 |
+
|
24 |
+
def bicubic_resize_video(video: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
25 |
+
num_frames, num_channels, height, width = video.shape
|
26 |
+
video = F.interpolate(video, size=size, mode="bicubic", align_corners=False)
|
27 |
+
return video
|
28 |
+
|
29 |
+
|
30 |
+
def find_nearest_video_resolution(
|
31 |
+
video: torch.Tensor, resolution_buckets: List[Tuple[int, int, int]]
|
32 |
+
) -> Tuple[int, int, int]:
|
33 |
+
num_frames, num_channels, height, width = video.shape
|
34 |
+
aspect_ratio = width / height
|
35 |
+
possible_buckets = [b for b in resolution_buckets if b[0] <= num_frames]
|
36 |
+
|
37 |
+
if not possible_buckets:
|
38 |
+
best_frame_match = min(resolution_buckets, key=lambda b: abs(b[0] - num_frames))
|
39 |
+
else:
|
40 |
+
best_frame_match = max(possible_buckets, key=lambda b: b[0])
|
41 |
+
|
42 |
+
frame_filtered_buckets = [b for b in resolution_buckets if b[0] == best_frame_match[0]]
|
43 |
+
|
44 |
+
def aspect_ratio_diff(bucket):
|
45 |
+
return abs((bucket[2] / bucket[1]) - aspect_ratio)
|
46 |
+
|
47 |
+
return min(frame_filtered_buckets, key=aspect_ratio_diff)
|
48 |
+
|
49 |
+
|
50 |
+
def resize_to_nearest_bucket_video(
|
51 |
+
video: torch.Tensor,
|
52 |
+
resolution_buckets: List[Tuple[int, int, int]],
|
53 |
+
resize_mode: Literal["center_crop", "resize_crop", "bicubic"] = "bicubic",
|
54 |
+
) -> torch.Tensor:
|
55 |
+
"""
|
56 |
+
Resizes a video tensor to the nearest resolution bucket using the specified mode.
|
57 |
+
- It first finds a frame match with <= T frames.
|
58 |
+
- Then, it selects the closest height/width bucket.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
video (`torch.Tensor`):
|
62 |
+
Input video tensor of shape `(B, T, C, H, W)`.
|
63 |
+
resolution_buckets (`List[Tuple[int, int, int]]`):
|
64 |
+
Available (num_frames, height, width) resolution buckets.
|
65 |
+
resize_mode (`str`):
|
66 |
+
One of ["center_crop", "resize_crop", "bicubic"].
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
`torch.Tensor`:
|
70 |
+
Resized video tensor of the nearest bucket resolution.
|
71 |
+
"""
|
72 |
+
target_frames, target_h, target_w = find_nearest_video_resolution(video, resolution_buckets)
|
73 |
+
|
74 |
+
# Adjust frame count: only interpolate frames if no lesser/equal frame count exists
|
75 |
+
num_frames, num_channels, height, width = video.shape
|
76 |
+
_first_frame_only = False
|
77 |
+
if num_frames > target_frames:
|
78 |
+
# Downsample: Select frames evenly
|
79 |
+
indices = torch.linspace(0, num_frames - 1, target_frames).long()
|
80 |
+
video = video[indices, :, :, :]
|
81 |
+
elif num_frames < target_frames:
|
82 |
+
_first_frame_only = False
|
83 |
+
|
84 |
+
# Resize spatial resolution
|
85 |
+
if resize_mode == "center_crop":
|
86 |
+
return center_crop_video(video, (target_h, target_w)), _first_frame_only
|
87 |
+
elif resize_mode == "resize_crop":
|
88 |
+
return resize_crop_video(video, (target_h, target_w)), _first_frame_only
|
89 |
+
elif resize_mode == "bicubic":
|
90 |
+
return bicubic_resize_video(video, (target_h, target_w)), _first_frame_only
|
91 |
+
else:
|
92 |
+
raise ValueError(
|
93 |
+
f"Invalid resize_mode: {resize_mode}. Choose from 'center_crop', 'resize_crop', or 'bicubic'."
|
94 |
+
)
|
finetrainers/hooks/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .layerwise_upcasting import apply_layerwise_upcasting
|
|
|
|
finetrainers/hooks/hooks.py
DELETED
@@ -1,176 +0,0 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
import functools
|
16 |
-
from typing import Any, Dict, Optional, Tuple
|
17 |
-
|
18 |
-
import torch
|
19 |
-
from accelerate.logging import get_logger
|
20 |
-
|
21 |
-
from ..constants import FINETRAINERS_LOG_LEVEL
|
22 |
-
|
23 |
-
|
24 |
-
logger = get_logger("finetrainers") # pylint: disable=invalid-name
|
25 |
-
logger.setLevel(FINETRAINERS_LOG_LEVEL)
|
26 |
-
|
27 |
-
|
28 |
-
class ModelHook:
|
29 |
-
r"""
|
30 |
-
A hook that contains callbacks to be executed just before and after the forward method of a model.
|
31 |
-
"""
|
32 |
-
|
33 |
-
_is_stateful = False
|
34 |
-
|
35 |
-
def initialize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
|
36 |
-
r"""
|
37 |
-
Hook that is executed when a model is initialized.
|
38 |
-
Args:
|
39 |
-
module (`torch.nn.Module`):
|
40 |
-
The module attached to this hook.
|
41 |
-
"""
|
42 |
-
return module
|
43 |
-
|
44 |
-
def deinitalize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
|
45 |
-
r"""
|
46 |
-
Hook that is executed when a model is deinitalized.
|
47 |
-
Args:
|
48 |
-
module (`torch.nn.Module`):
|
49 |
-
The module attached to this hook.
|
50 |
-
"""
|
51 |
-
module.forward = module._old_forward
|
52 |
-
del module._old_forward
|
53 |
-
return module
|
54 |
-
|
55 |
-
def pre_forward(self, module: torch.nn.Module, *args, **kwargs) -> Tuple[Tuple[Any], Dict[str, Any]]:
|
56 |
-
r"""
|
57 |
-
Hook that is executed just before the forward method of the model.
|
58 |
-
Args:
|
59 |
-
module (`torch.nn.Module`):
|
60 |
-
The module whose forward pass will be executed just after this event.
|
61 |
-
args (`Tuple[Any]`):
|
62 |
-
The positional arguments passed to the module.
|
63 |
-
kwargs (`Dict[Str, Any]`):
|
64 |
-
The keyword arguments passed to the module.
|
65 |
-
Returns:
|
66 |
-
`Tuple[Tuple[Any], Dict[Str, Any]]`:
|
67 |
-
A tuple with the treated `args` and `kwargs`.
|
68 |
-
"""
|
69 |
-
return args, kwargs
|
70 |
-
|
71 |
-
def post_forward(self, module: torch.nn.Module, output: Any) -> Any:
|
72 |
-
r"""
|
73 |
-
Hook that is executed just after the forward method of the model.
|
74 |
-
Args:
|
75 |
-
module (`torch.nn.Module`):
|
76 |
-
The module whose forward pass been executed just before this event.
|
77 |
-
output (`Any`):
|
78 |
-
The output of the module.
|
79 |
-
Returns:
|
80 |
-
`Any`: The processed `output`.
|
81 |
-
"""
|
82 |
-
return output
|
83 |
-
|
84 |
-
def detach_hook(self, module: torch.nn.Module) -> torch.nn.Module:
|
85 |
-
r"""
|
86 |
-
Hook that is executed when the hook is detached from a module.
|
87 |
-
Args:
|
88 |
-
module (`torch.nn.Module`):
|
89 |
-
The module detached from this hook.
|
90 |
-
"""
|
91 |
-
return module
|
92 |
-
|
93 |
-
def reset_state(self, module: torch.nn.Module):
|
94 |
-
if self._is_stateful:
|
95 |
-
raise NotImplementedError("This hook is stateful and needs to implement the `reset_state` method.")
|
96 |
-
return module
|
97 |
-
|
98 |
-
|
99 |
-
class HookRegistry:
|
100 |
-
def __init__(self, module_ref: torch.nn.Module) -> None:
|
101 |
-
super().__init__()
|
102 |
-
|
103 |
-
self.hooks: Dict[str, ModelHook] = {}
|
104 |
-
|
105 |
-
self._module_ref = module_ref
|
106 |
-
self._hook_order = []
|
107 |
-
|
108 |
-
def register_hook(self, hook: ModelHook, name: str) -> None:
|
109 |
-
if name in self.hooks.keys():
|
110 |
-
logger.warning(f"Hook with name {name} already exists, replacing it.")
|
111 |
-
|
112 |
-
if hasattr(self._module_ref, "_old_forward"):
|
113 |
-
old_forward = self._module_ref._old_forward
|
114 |
-
else:
|
115 |
-
old_forward = self._module_ref.forward
|
116 |
-
self._module_ref._old_forward = self._module_ref.forward
|
117 |
-
|
118 |
-
self._module_ref = hook.initialize_hook(self._module_ref)
|
119 |
-
|
120 |
-
if hasattr(hook, "new_forward"):
|
121 |
-
rewritten_forward = hook.new_forward
|
122 |
-
|
123 |
-
def new_forward(module, *args, **kwargs):
|
124 |
-
args, kwargs = hook.pre_forward(module, *args, **kwargs)
|
125 |
-
output = rewritten_forward(module, *args, **kwargs)
|
126 |
-
return hook.post_forward(module, output)
|
127 |
-
else:
|
128 |
-
|
129 |
-
def new_forward(module, *args, **kwargs):
|
130 |
-
args, kwargs = hook.pre_forward(module, *args, **kwargs)
|
131 |
-
output = old_forward(*args, **kwargs)
|
132 |
-
return hook.post_forward(module, output)
|
133 |
-
|
134 |
-
self._module_ref.forward = functools.update_wrapper(
|
135 |
-
functools.partial(new_forward, self._module_ref), old_forward
|
136 |
-
)
|
137 |
-
|
138 |
-
self.hooks[name] = hook
|
139 |
-
self._hook_order.append(name)
|
140 |
-
|
141 |
-
def get_hook(self, name: str) -> Optional[ModelHook]:
|
142 |
-
if name not in self.hooks.keys():
|
143 |
-
return None
|
144 |
-
return self.hooks[name]
|
145 |
-
|
146 |
-
def remove_hook(self, name: str) -> None:
|
147 |
-
if name not in self.hooks.keys():
|
148 |
-
raise ValueError(f"Hook with name {name} not found.")
|
149 |
-
self.hooks[name].deinitalize_hook(self._module_ref)
|
150 |
-
del self.hooks[name]
|
151 |
-
self._hook_order.remove(name)
|
152 |
-
|
153 |
-
def reset_stateful_hooks(self, recurse: bool = True) -> None:
|
154 |
-
for hook_name in self._hook_order:
|
155 |
-
hook = self.hooks[hook_name]
|
156 |
-
if hook._is_stateful:
|
157 |
-
hook.reset_state(self._module_ref)
|
158 |
-
|
159 |
-
if recurse:
|
160 |
-
for module in self._module_ref.modules():
|
161 |
-
if hasattr(module, "_diffusers_hook"):
|
162 |
-
module._diffusers_hook.reset_stateful_hooks(recurse=False)
|
163 |
-
|
164 |
-
@classmethod
|
165 |
-
def check_if_exists_or_initialize(cls, module: torch.nn.Module) -> "HookRegistry":
|
166 |
-
if not hasattr(module, "_diffusers_hook"):
|
167 |
-
module._diffusers_hook = cls(module)
|
168 |
-
return module._diffusers_hook
|
169 |
-
|
170 |
-
def __repr__(self) -> str:
|
171 |
-
hook_repr = ""
|
172 |
-
for i, hook_name in enumerate(self._hook_order):
|
173 |
-
hook_repr += f" ({i}) {hook_name} - ({self.hooks[hook_name].__class__.__name__})"
|
174 |
-
if i < len(self._hook_order) - 1:
|
175 |
-
hook_repr += "\n"
|
176 |
-
return f"HookRegistry(\n{hook_repr}\n)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/hooks/layerwise_upcasting.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
import re
|
16 |
-
from typing import Optional, Tuple, Type
|
17 |
-
|
18 |
-
import torch
|
19 |
-
from accelerate.logging import get_logger
|
20 |
-
|
21 |
-
from ..constants import FINETRAINERS_LOG_LEVEL
|
22 |
-
from .hooks import HookRegistry, ModelHook
|
23 |
-
|
24 |
-
|
25 |
-
logger = get_logger("finetrainers") # pylint: disable=invalid-name
|
26 |
-
logger.setLevel(FINETRAINERS_LOG_LEVEL)
|
27 |
-
|
28 |
-
|
29 |
-
# fmt: off
|
30 |
-
_SUPPORTED_PYTORCH_LAYERS = (
|
31 |
-
torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d,
|
32 |
-
torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d,
|
33 |
-
torch.nn.Linear,
|
34 |
-
)
|
35 |
-
|
36 |
-
_DEFAULT_SKIP_MODULES_PATTERN = ("pos_embed", "patch_embed", "norm")
|
37 |
-
# fmt: on
|
38 |
-
|
39 |
-
|
40 |
-
class LayerwiseUpcastingHook(ModelHook):
|
41 |
-
r"""
|
42 |
-
A hook that casts the weights of a module to a high precision dtype for computation, and to a low precision dtype
|
43 |
-
for storage. This process may lead to quality loss in the output, but can significantly reduce the memory
|
44 |
-
footprint.
|
45 |
-
"""
|
46 |
-
|
47 |
-
_is_stateful = False
|
48 |
-
|
49 |
-
def __init__(self, storage_dtype: torch.dtype, compute_dtype: torch.dtype, non_blocking: bool) -> None:
|
50 |
-
self.storage_dtype = storage_dtype
|
51 |
-
self.compute_dtype = compute_dtype
|
52 |
-
self.non_blocking = non_blocking
|
53 |
-
|
54 |
-
def initialize_hook(self, module: torch.nn.Module):
|
55 |
-
module.to(dtype=self.storage_dtype, non_blocking=self.non_blocking)
|
56 |
-
return module
|
57 |
-
|
58 |
-
def pre_forward(self, module: torch.nn.Module, *args, **kwargs):
|
59 |
-
module.to(dtype=self.compute_dtype, non_blocking=self.non_blocking)
|
60 |
-
return args, kwargs
|
61 |
-
|
62 |
-
def post_forward(self, module: torch.nn.Module, output):
|
63 |
-
module.to(dtype=self.storage_dtype, non_blocking=self.non_blocking)
|
64 |
-
return output
|
65 |
-
|
66 |
-
|
67 |
-
def apply_layerwise_upcasting(
|
68 |
-
module: torch.nn.Module,
|
69 |
-
storage_dtype: torch.dtype,
|
70 |
-
compute_dtype: torch.dtype,
|
71 |
-
skip_modules_pattern: Optional[Tuple[str]] = _DEFAULT_SKIP_MODULES_PATTERN,
|
72 |
-
skip_modules_classes: Optional[Tuple[Type[torch.nn.Module]]] = None,
|
73 |
-
non_blocking: bool = False,
|
74 |
-
_prefix: str = "",
|
75 |
-
) -> None:
|
76 |
-
r"""
|
77 |
-
Applies layerwise upcasting to a given module. The module expected here is a Diffusers ModelMixin but it can be any
|
78 |
-
nn.Module using diffusers layers or pytorch primitives.
|
79 |
-
Args:
|
80 |
-
module (`torch.nn.Module`):
|
81 |
-
The module whose leaf modules will be cast to a high precision dtype for computation, and to a low
|
82 |
-
precision dtype for storage.
|
83 |
-
storage_dtype (`torch.dtype`):
|
84 |
-
The dtype to cast the module to before/after the forward pass for storage.
|
85 |
-
compute_dtype (`torch.dtype`):
|
86 |
-
The dtype to cast the module to during the forward pass for computation.
|
87 |
-
skip_modules_pattern (`Tuple[str]`, defaults to `["pos_embed", "patch_embed", "norm"]`):
|
88 |
-
A list of patterns to match the names of the modules to skip during the layerwise upcasting process.
|
89 |
-
skip_modules_classes (`Tuple[Type[torch.nn.Module]]`, defaults to `None`):
|
90 |
-
A list of module classes to skip during the layerwise upcasting process.
|
91 |
-
non_blocking (`bool`, defaults to `False`):
|
92 |
-
If `True`, the weight casting operations are non-blocking.
|
93 |
-
"""
|
94 |
-
if skip_modules_classes is None and skip_modules_pattern is None:
|
95 |
-
apply_layerwise_upcasting_hook(module, storage_dtype, compute_dtype, non_blocking)
|
96 |
-
return
|
97 |
-
|
98 |
-
should_skip = (skip_modules_classes is not None and isinstance(module, skip_modules_classes)) or (
|
99 |
-
skip_modules_pattern is not None and any(re.search(pattern, _prefix) for pattern in skip_modules_pattern)
|
100 |
-
)
|
101 |
-
if should_skip:
|
102 |
-
logger.debug(f'Skipping layerwise upcasting for layer "{_prefix}"')
|
103 |
-
return
|
104 |
-
|
105 |
-
if isinstance(module, _SUPPORTED_PYTORCH_LAYERS):
|
106 |
-
logger.debug(f'Applying layerwise upcasting to layer "{_prefix}"')
|
107 |
-
apply_layerwise_upcasting_hook(module, storage_dtype, compute_dtype, non_blocking)
|
108 |
-
return
|
109 |
-
|
110 |
-
for name, submodule in module.named_children():
|
111 |
-
layer_name = f"{_prefix}.{name}" if _prefix else name
|
112 |
-
apply_layerwise_upcasting(
|
113 |
-
submodule,
|
114 |
-
storage_dtype,
|
115 |
-
compute_dtype,
|
116 |
-
skip_modules_pattern,
|
117 |
-
skip_modules_classes,
|
118 |
-
non_blocking,
|
119 |
-
_prefix=layer_name,
|
120 |
-
)
|
121 |
-
|
122 |
-
|
123 |
-
def apply_layerwise_upcasting_hook(
|
124 |
-
module: torch.nn.Module, storage_dtype: torch.dtype, compute_dtype: torch.dtype, non_blocking: bool
|
125 |
-
) -> None:
|
126 |
-
r"""
|
127 |
-
Applies a `LayerwiseUpcastingHook` to a given module.
|
128 |
-
Args:
|
129 |
-
module (`torch.nn.Module`):
|
130 |
-
The module to attach the hook to.
|
131 |
-
storage_dtype (`torch.dtype`):
|
132 |
-
The dtype to cast the module to before the forward pass.
|
133 |
-
compute_dtype (`torch.dtype`):
|
134 |
-
The dtype to cast the module to during the forward pass.
|
135 |
-
non_blocking (`bool`):
|
136 |
-
If `True`, the weight casting operations are non-blocking.
|
137 |
-
"""
|
138 |
-
registry = HookRegistry.check_if_exists_or_initialize(module)
|
139 |
-
hook = LayerwiseUpcastingHook(storage_dtype, compute_dtype, non_blocking)
|
140 |
-
registry.register_hook(hook, "layerwise_upcasting")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/logging.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from typing import TYPE_CHECKING, Union
|
4 |
+
|
5 |
+
from .constants import FINETRAINERS_LOG_LEVEL
|
6 |
+
|
7 |
+
|
8 |
+
if TYPE_CHECKING:
|
9 |
+
from .parallel import ParallelBackendType
|
10 |
+
|
11 |
+
|
12 |
+
class FinetrainersLoggerAdapter(logging.LoggerAdapter):
|
13 |
+
def __init__(self, logger: logging.Logger, parallel_backend: "ParallelBackendType" = None) -> None:
|
14 |
+
super().__init__(logger, {})
|
15 |
+
self.parallel_backend = parallel_backend
|
16 |
+
self._log_freq = {}
|
17 |
+
self._log_freq_counter = {}
|
18 |
+
|
19 |
+
def log(
|
20 |
+
self,
|
21 |
+
level,
|
22 |
+
msg,
|
23 |
+
*args,
|
24 |
+
main_process_only: bool = False,
|
25 |
+
local_main_process_only: bool = True,
|
26 |
+
in_order: bool = False,
|
27 |
+
**kwargs,
|
28 |
+
):
|
29 |
+
# set `stacklevel` to exclude ourself in `Logger.findCaller()` while respecting user's choice
|
30 |
+
kwargs.setdefault("stacklevel", 2)
|
31 |
+
|
32 |
+
if not self.isEnabledFor(level):
|
33 |
+
return
|
34 |
+
|
35 |
+
if self.parallel_backend is None:
|
36 |
+
if int(os.environ.get("RANK", 0)) == 0:
|
37 |
+
msg, kwargs = self.process(msg, kwargs)
|
38 |
+
self.logger.log(level, msg, *args, **kwargs)
|
39 |
+
return
|
40 |
+
|
41 |
+
if (main_process_only or local_main_process_only) and in_order:
|
42 |
+
raise ValueError(
|
43 |
+
"Cannot set `main_process_only` or `local_main_process_only` to True while `in_order` is True."
|
44 |
+
)
|
45 |
+
|
46 |
+
if (main_process_only and self.parallel_backend.is_main_process) or (
|
47 |
+
local_main_process_only and self.parallel_backend.is_local_main_process
|
48 |
+
):
|
49 |
+
msg, kwargs = self.process(msg, kwargs)
|
50 |
+
self.logger.log(level, msg, *args, **kwargs)
|
51 |
+
return
|
52 |
+
|
53 |
+
if in_order:
|
54 |
+
for i in range(self.parallel_backend.world_size):
|
55 |
+
if self.rank == i:
|
56 |
+
msg, kwargs = self.process(msg, kwargs)
|
57 |
+
self.logger.log(level, msg, *args, **kwargs)
|
58 |
+
self.parallel_backend.wait_for_everyone()
|
59 |
+
return
|
60 |
+
|
61 |
+
if not main_process_only and not local_main_process_only:
|
62 |
+
msg, kwargs = self.process(msg, kwargs)
|
63 |
+
self.logger.log(level, msg, *args, **kwargs)
|
64 |
+
return
|
65 |
+
|
66 |
+
def log_freq(
|
67 |
+
self,
|
68 |
+
level: str,
|
69 |
+
name: str,
|
70 |
+
msg: str,
|
71 |
+
frequency: int,
|
72 |
+
*,
|
73 |
+
main_process_only: bool = False,
|
74 |
+
local_main_process_only: bool = True,
|
75 |
+
in_order: bool = False,
|
76 |
+
**kwargs,
|
77 |
+
) -> None:
|
78 |
+
if frequency <= 0:
|
79 |
+
return
|
80 |
+
if name not in self._log_freq_counter:
|
81 |
+
self._log_freq[name] = frequency
|
82 |
+
self._log_freq_counter[name] = 0
|
83 |
+
if self._log_freq_counter[name] % self._log_freq[name] == 0:
|
84 |
+
self.log(
|
85 |
+
level,
|
86 |
+
msg,
|
87 |
+
main_process_only=main_process_only,
|
88 |
+
local_main_process_only=local_main_process_only,
|
89 |
+
in_order=in_order,
|
90 |
+
**kwargs,
|
91 |
+
)
|
92 |
+
self._log_freq_counter[name] += 1
|
93 |
+
|
94 |
+
|
95 |
+
def get_logger() -> Union[logging.Logger, FinetrainersLoggerAdapter]:
|
96 |
+
global _logger
|
97 |
+
return _logger
|
98 |
+
|
99 |
+
|
100 |
+
def _set_parallel_backend(parallel_backend: "ParallelBackendType") -> FinetrainersLoggerAdapter:
|
101 |
+
_logger.parallel_backend = parallel_backend
|
102 |
+
|
103 |
+
|
104 |
+
_logger = logging.getLogger("finetrainers")
|
105 |
+
_logger.setLevel(FINETRAINERS_LOG_LEVEL)
|
106 |
+
_console_handler = logging.StreamHandler()
|
107 |
+
_console_handler.setLevel(FINETRAINERS_LOG_LEVEL)
|
108 |
+
_formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
109 |
+
_console_handler.setFormatter(_formatter)
|
110 |
+
_logger.addHandler(_console_handler)
|
111 |
+
_logger = FinetrainersLoggerAdapter(_logger)
|
finetrainers/models/__init__.py
CHANGED
@@ -1,33 +1 @@
|
|
1 |
-
from
|
2 |
-
|
3 |
-
from .cogvideox import COGVIDEOX_T2V_FULL_FINETUNE_CONFIG, COGVIDEOX_T2V_LORA_CONFIG
|
4 |
-
from .hunyuan_video import HUNYUAN_VIDEO_T2V_FULL_FINETUNE_CONFIG, HUNYUAN_VIDEO_T2V_LORA_CONFIG
|
5 |
-
from .ltx_video import LTX_VIDEO_T2V_FULL_FINETUNE_CONFIG, LTX_VIDEO_T2V_LORA_CONFIG
|
6 |
-
|
7 |
-
|
8 |
-
SUPPORTED_MODEL_CONFIGS = {
|
9 |
-
"hunyuan_video": {
|
10 |
-
"lora": HUNYUAN_VIDEO_T2V_LORA_CONFIG,
|
11 |
-
"full-finetune": HUNYUAN_VIDEO_T2V_FULL_FINETUNE_CONFIG,
|
12 |
-
},
|
13 |
-
"ltx_video": {
|
14 |
-
"lora": LTX_VIDEO_T2V_LORA_CONFIG,
|
15 |
-
"full-finetune": LTX_VIDEO_T2V_FULL_FINETUNE_CONFIG,
|
16 |
-
},
|
17 |
-
"cogvideox": {
|
18 |
-
"lora": COGVIDEOX_T2V_LORA_CONFIG,
|
19 |
-
"full-finetune": COGVIDEOX_T2V_FULL_FINETUNE_CONFIG,
|
20 |
-
},
|
21 |
-
}
|
22 |
-
|
23 |
-
|
24 |
-
def get_config_from_model_name(model_name: str, training_type: str) -> Dict[str, Any]:
|
25 |
-
if model_name not in SUPPORTED_MODEL_CONFIGS:
|
26 |
-
raise ValueError(
|
27 |
-
f"Model {model_name} not supported. Supported models are: {list(SUPPORTED_MODEL_CONFIGS.keys())}"
|
28 |
-
)
|
29 |
-
if training_type not in SUPPORTED_MODEL_CONFIGS[model_name]:
|
30 |
-
raise ValueError(
|
31 |
-
f"Training type {training_type} not supported for model {model_name}. Supported training types are: {list(SUPPORTED_MODEL_CONFIGS[model_name].keys())}"
|
32 |
-
)
|
33 |
-
return SUPPORTED_MODEL_CONFIGS[model_name][training_type]
|
|
|
1 |
+
from .modeling_utils import ModelSpecification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/cogvideox/__init__.py
CHANGED
@@ -1,2 +1 @@
|
|
1 |
-
from .
|
2 |
-
from .lora import COGVIDEOX_T2V_LORA_CONFIG
|
|
|
1 |
+
from .base_specification import CogVideoXModelSpecification
|
|
finetrainers/models/cogvideox/base_specification.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Any, Dict, List, Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from accelerate import init_empty_weights
|
6 |
+
from diffusers import (
|
7 |
+
AutoencoderKLCogVideoX,
|
8 |
+
CogVideoXDDIMScheduler,
|
9 |
+
CogVideoXImageToVideoPipeline,
|
10 |
+
CogVideoXPipeline,
|
11 |
+
CogVideoXTransformer3DModel,
|
12 |
+
)
|
13 |
+
from PIL.Image import Image
|
14 |
+
from transformers import AutoModel, AutoTokenizer, T5EncoderModel, T5Tokenizer
|
15 |
+
|
16 |
+
from ... import data
|
17 |
+
from ...logging import get_logger
|
18 |
+
from ...processors import ProcessorMixin, T5Processor
|
19 |
+
from ...typing import ArtifactType, SchedulerType
|
20 |
+
from ...utils import get_non_null_items
|
21 |
+
from ..modeling_utils import ModelSpecification
|
22 |
+
from ..utils import DiagonalGaussianDistribution
|
23 |
+
from .utils import prepare_rotary_positional_embeddings
|
24 |
+
|
25 |
+
|
26 |
+
logger = get_logger()
|
27 |
+
|
28 |
+
|
29 |
+
class CogVideoXLatentEncodeProcessor(ProcessorMixin):
|
30 |
+
r"""
|
31 |
+
Processor to encode image/video into latents using the CogVideoX VAE.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
output_names (`List[str]`):
|
35 |
+
The names of the outputs that the processor returns. The outputs are in the following order:
|
36 |
+
- latents: The latents of the input image/video.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, output_names: List[str]):
|
40 |
+
super().__init__()
|
41 |
+
self.output_names = output_names
|
42 |
+
assert len(self.output_names) == 1
|
43 |
+
|
44 |
+
def forward(
|
45 |
+
self,
|
46 |
+
vae: AutoencoderKLCogVideoX,
|
47 |
+
image: Optional[torch.Tensor] = None,
|
48 |
+
video: Optional[torch.Tensor] = None,
|
49 |
+
generator: Optional[torch.Generator] = None,
|
50 |
+
compute_posterior: bool = True,
|
51 |
+
) -> Dict[str, torch.Tensor]:
|
52 |
+
device = vae.device
|
53 |
+
dtype = vae.dtype
|
54 |
+
|
55 |
+
if image is not None:
|
56 |
+
video = image.unsqueeze(1)
|
57 |
+
|
58 |
+
assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
|
59 |
+
video = video.to(device=device, dtype=vae.dtype)
|
60 |
+
video = video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
|
61 |
+
|
62 |
+
if compute_posterior:
|
63 |
+
latents = vae.encode(video).latent_dist.sample(generator=generator)
|
64 |
+
latents = latents.to(dtype=dtype)
|
65 |
+
else:
|
66 |
+
if vae.use_slicing and video.shape[0] > 1:
|
67 |
+
encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
|
68 |
+
moments = torch.cat(encoded_slices)
|
69 |
+
else:
|
70 |
+
moments = vae._encode(video)
|
71 |
+
latents = moments.to(dtype=dtype)
|
72 |
+
|
73 |
+
latents = latents.permute(0, 2, 1, 3, 4) # [B, C, F, H, W] -> [B, F, C, H, W]
|
74 |
+
return {self.output_names[0]: latents}
|
75 |
+
|
76 |
+
|
77 |
+
class CogVideoXModelSpecification(ModelSpecification):
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
pretrained_model_name_or_path: str = "THUDM/CogVideoX-5b",
|
81 |
+
tokenizer_id: Optional[str] = None,
|
82 |
+
text_encoder_id: Optional[str] = None,
|
83 |
+
transformer_id: Optional[str] = None,
|
84 |
+
vae_id: Optional[str] = None,
|
85 |
+
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
86 |
+
transformer_dtype: torch.dtype = torch.bfloat16,
|
87 |
+
vae_dtype: torch.dtype = torch.bfloat16,
|
88 |
+
revision: Optional[str] = None,
|
89 |
+
cache_dir: Optional[str] = None,
|
90 |
+
condition_model_processors: List[ProcessorMixin] = None,
|
91 |
+
latent_model_processors: List[ProcessorMixin] = None,
|
92 |
+
**kwargs,
|
93 |
+
) -> None:
|
94 |
+
super().__init__(
|
95 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
96 |
+
tokenizer_id=tokenizer_id,
|
97 |
+
text_encoder_id=text_encoder_id,
|
98 |
+
transformer_id=transformer_id,
|
99 |
+
vae_id=vae_id,
|
100 |
+
text_encoder_dtype=text_encoder_dtype,
|
101 |
+
transformer_dtype=transformer_dtype,
|
102 |
+
vae_dtype=vae_dtype,
|
103 |
+
revision=revision,
|
104 |
+
cache_dir=cache_dir,
|
105 |
+
)
|
106 |
+
|
107 |
+
if condition_model_processors is None:
|
108 |
+
condition_model_processors = [T5Processor(["prompt_embeds", "prompt_attention_mask"])]
|
109 |
+
if latent_model_processors is None:
|
110 |
+
latent_model_processors = [CogVideoXLatentEncodeProcessor(["latents"])]
|
111 |
+
|
112 |
+
self.condition_model_processors = condition_model_processors
|
113 |
+
self.latent_model_processors = latent_model_processors
|
114 |
+
|
115 |
+
@property
|
116 |
+
def _resolution_dim_keys(self):
|
117 |
+
return {"latents": (1, 3, 4)}
|
118 |
+
|
119 |
+
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
|
120 |
+
if self.tokenizer_id is not None:
|
121 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
122 |
+
self.tokenizer_id, revision=self.revision, cache_dir=self.cache_dir
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
126 |
+
self.pretrained_model_name_or_path,
|
127 |
+
subfolder="tokenizer",
|
128 |
+
revision=self.revision,
|
129 |
+
cache_dir=self.cache_dir,
|
130 |
+
)
|
131 |
+
|
132 |
+
if self.text_encoder_id is not None:
|
133 |
+
text_encoder = AutoModel.from_pretrained(
|
134 |
+
self.text_encoder_id,
|
135 |
+
torch_dtype=self.text_encoder_dtype,
|
136 |
+
revision=self.revision,
|
137 |
+
cache_dir=self.cache_dir,
|
138 |
+
)
|
139 |
+
else:
|
140 |
+
text_encoder = T5EncoderModel.from_pretrained(
|
141 |
+
self.pretrained_model_name_or_path,
|
142 |
+
subfolder="text_encoder",
|
143 |
+
torch_dtype=self.text_encoder_dtype,
|
144 |
+
revision=self.revision,
|
145 |
+
cache_dir=self.cache_dir,
|
146 |
+
)
|
147 |
+
|
148 |
+
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
|
149 |
+
|
150 |
+
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
|
151 |
+
if self.vae_id is not None:
|
152 |
+
vae = AutoencoderKLCogVideoX.from_pretrained(
|
153 |
+
self.vae_id,
|
154 |
+
torch_dtype=self.vae_dtype,
|
155 |
+
revision=self.revision,
|
156 |
+
cache_dir=self.cache_dir,
|
157 |
+
)
|
158 |
+
else:
|
159 |
+
vae = AutoencoderKLCogVideoX.from_pretrained(
|
160 |
+
self.pretrained_model_name_or_path,
|
161 |
+
subfolder="vae",
|
162 |
+
torch_dtype=self.vae_dtype,
|
163 |
+
revision=self.revision,
|
164 |
+
cache_dir=self.cache_dir,
|
165 |
+
)
|
166 |
+
|
167 |
+
return {"vae": vae}
|
168 |
+
|
169 |
+
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
|
170 |
+
if self.transformer_id is not None:
|
171 |
+
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
172 |
+
self.transformer_id,
|
173 |
+
torch_dtype=self.transformer_dtype,
|
174 |
+
revision=self.revision,
|
175 |
+
cache_dir=self.cache_dir,
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
179 |
+
self.pretrained_model_name_or_path,
|
180 |
+
subfolder="transformer",
|
181 |
+
torch_dtype=self.transformer_dtype,
|
182 |
+
revision=self.revision,
|
183 |
+
cache_dir=self.cache_dir,
|
184 |
+
)
|
185 |
+
|
186 |
+
scheduler = CogVideoXDDIMScheduler.from_pretrained(
|
187 |
+
self.pretrained_model_name_or_path, subfolder="scheduler", revision=self.revision, cache_dir=self.cache_dir
|
188 |
+
)
|
189 |
+
|
190 |
+
return {"transformer": transformer, "scheduler": scheduler}
|
191 |
+
|
192 |
+
def load_pipeline(
|
193 |
+
self,
|
194 |
+
tokenizer: Optional[T5Tokenizer] = None,
|
195 |
+
text_encoder: Optional[T5EncoderModel] = None,
|
196 |
+
transformer: Optional[CogVideoXTransformer3DModel] = None,
|
197 |
+
vae: Optional[AutoencoderKLCogVideoX] = None,
|
198 |
+
scheduler: Optional[CogVideoXDDIMScheduler] = None,
|
199 |
+
enable_slicing: bool = False,
|
200 |
+
enable_tiling: bool = False,
|
201 |
+
enable_model_cpu_offload: bool = False,
|
202 |
+
training: bool = False,
|
203 |
+
**kwargs,
|
204 |
+
) -> CogVideoXPipeline:
|
205 |
+
components = {
|
206 |
+
"tokenizer": tokenizer,
|
207 |
+
"text_encoder": text_encoder,
|
208 |
+
"transformer": transformer,
|
209 |
+
"vae": vae,
|
210 |
+
"scheduler": scheduler,
|
211 |
+
}
|
212 |
+
components = get_non_null_items(components)
|
213 |
+
|
214 |
+
pipe = CogVideoXPipeline.from_pretrained(
|
215 |
+
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
|
216 |
+
)
|
217 |
+
pipe.text_encoder.to(self.text_encoder_dtype)
|
218 |
+
pipe.vae.to(self.vae_dtype)
|
219 |
+
|
220 |
+
if not training:
|
221 |
+
pipe.transformer.to(self.transformer_dtype)
|
222 |
+
|
223 |
+
if enable_slicing:
|
224 |
+
pipe.vae.enable_slicing()
|
225 |
+
if enable_tiling:
|
226 |
+
pipe.vae.enable_tiling()
|
227 |
+
if enable_model_cpu_offload:
|
228 |
+
pipe.enable_model_cpu_offload()
|
229 |
+
|
230 |
+
return pipe
|
231 |
+
|
232 |
+
@torch.no_grad()
|
233 |
+
def prepare_conditions(
|
234 |
+
self,
|
235 |
+
tokenizer: T5Tokenizer,
|
236 |
+
text_encoder: T5EncoderModel,
|
237 |
+
caption: str,
|
238 |
+
max_sequence_length: int = 226,
|
239 |
+
**kwargs,
|
240 |
+
) -> Dict[str, Any]:
|
241 |
+
conditions = {
|
242 |
+
"tokenizer": tokenizer,
|
243 |
+
"text_encoder": text_encoder,
|
244 |
+
"caption": caption,
|
245 |
+
"max_sequence_length": max_sequence_length,
|
246 |
+
**kwargs,
|
247 |
+
}
|
248 |
+
input_keys = set(conditions.keys())
|
249 |
+
conditions = super().prepare_conditions(**conditions)
|
250 |
+
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
251 |
+
conditions.pop("prompt_attention_mask", None)
|
252 |
+
return conditions
|
253 |
+
|
254 |
+
@torch.no_grad()
|
255 |
+
def prepare_latents(
|
256 |
+
self,
|
257 |
+
vae: AutoencoderKLCogVideoX,
|
258 |
+
image: Optional[torch.Tensor] = None,
|
259 |
+
video: Optional[torch.Tensor] = None,
|
260 |
+
generator: Optional[torch.Generator] = None,
|
261 |
+
compute_posterior: bool = True,
|
262 |
+
**kwargs,
|
263 |
+
) -> Dict[str, torch.Tensor]:
|
264 |
+
conditions = {
|
265 |
+
"vae": vae,
|
266 |
+
"image": image,
|
267 |
+
"video": video,
|
268 |
+
"generator": generator,
|
269 |
+
"compute_posterior": compute_posterior,
|
270 |
+
**kwargs,
|
271 |
+
}
|
272 |
+
input_keys = set(conditions.keys())
|
273 |
+
conditions = super().prepare_latents(**conditions)
|
274 |
+
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
275 |
+
return conditions
|
276 |
+
|
277 |
+
def forward(
|
278 |
+
self,
|
279 |
+
transformer: CogVideoXTransformer3DModel,
|
280 |
+
scheduler: CogVideoXDDIMScheduler,
|
281 |
+
condition_model_conditions: Dict[str, torch.Tensor],
|
282 |
+
latent_model_conditions: Dict[str, torch.Tensor],
|
283 |
+
sigmas: torch.Tensor,
|
284 |
+
generator: Optional[torch.Generator] = None,
|
285 |
+
compute_posterior: bool = True,
|
286 |
+
**kwargs,
|
287 |
+
) -> Tuple[torch.Tensor, ...]:
|
288 |
+
# Just hardcode for now. In Diffusers, we will refactor such that RoPE would be handled within the model itself.
|
289 |
+
VAE_SPATIAL_SCALE_FACTOR = 8
|
290 |
+
rope_base_height = self.transformer_config.sample_height * VAE_SPATIAL_SCALE_FACTOR
|
291 |
+
rope_base_width = self.transformer_config.sample_width * VAE_SPATIAL_SCALE_FACTOR
|
292 |
+
patch_size = self.transformer_config.patch_size
|
293 |
+
patch_size_t = getattr(self.transformer_config, "patch_size_t", None)
|
294 |
+
|
295 |
+
if compute_posterior:
|
296 |
+
latents = latent_model_conditions.pop("latents")
|
297 |
+
else:
|
298 |
+
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"), _dim=2)
|
299 |
+
latents = posterior.sample(generator=generator)
|
300 |
+
del posterior
|
301 |
+
|
302 |
+
if not self.vae_config.invert_scale_latents:
|
303 |
+
latents = latents * self.vae_config.scaling_factor
|
304 |
+
|
305 |
+
if patch_size_t is not None:
|
306 |
+
latents = self._pad_frames(latents, patch_size_t)
|
307 |
+
|
308 |
+
timesteps = (sigmas.flatten() * 1000.0).long()
|
309 |
+
|
310 |
+
noise = torch.zeros_like(latents).normal_(generator=generator)
|
311 |
+
noisy_latents = scheduler.add_noise(latents, noise, timesteps)
|
312 |
+
|
313 |
+
batch_size, num_frames, num_channels, height, width = latents.shape
|
314 |
+
ofs_emb = (
|
315 |
+
None
|
316 |
+
if getattr(self.transformer_config, "ofs_embed_dim", None) is None
|
317 |
+
else latents.new_full((batch_size,), fill_value=2.0)
|
318 |
+
)
|
319 |
+
|
320 |
+
image_rotary_emb = (
|
321 |
+
prepare_rotary_positional_embeddings(
|
322 |
+
height=height * VAE_SPATIAL_SCALE_FACTOR,
|
323 |
+
width=width * VAE_SPATIAL_SCALE_FACTOR,
|
324 |
+
num_frames=num_frames,
|
325 |
+
vae_scale_factor_spatial=VAE_SPATIAL_SCALE_FACTOR,
|
326 |
+
patch_size=patch_size,
|
327 |
+
patch_size_t=patch_size_t,
|
328 |
+
attention_head_dim=self.transformer_config.attention_head_dim,
|
329 |
+
device=transformer.device,
|
330 |
+
base_height=rope_base_height,
|
331 |
+
base_width=rope_base_width,
|
332 |
+
)
|
333 |
+
if self.transformer_config.use_rotary_positional_embeddings
|
334 |
+
else None
|
335 |
+
)
|
336 |
+
|
337 |
+
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
|
338 |
+
latent_model_conditions["image_rotary_emb"] = image_rotary_emb
|
339 |
+
latent_model_conditions["ofs"] = ofs_emb
|
340 |
+
condition_model_conditions["encoder_hidden_states"] = condition_model_conditions.pop("prompt_embeds")
|
341 |
+
|
342 |
+
velocity = transformer(
|
343 |
+
**latent_model_conditions,
|
344 |
+
**condition_model_conditions,
|
345 |
+
timestep=timesteps,
|
346 |
+
return_dict=False,
|
347 |
+
)[0]
|
348 |
+
# For CogVideoX, the transformer predicts the velocity. The denoised output is calculated by applying the same
|
349 |
+
# code paths as scheduler.get_velocity(), which can be confusing to understand.
|
350 |
+
pred = scheduler.get_velocity(velocity, noisy_latents, timesteps)
|
351 |
+
target = latents
|
352 |
+
|
353 |
+
return pred, target, sigmas
|
354 |
+
|
355 |
+
def validation(
|
356 |
+
self,
|
357 |
+
pipeline: CogVideoXPipeline,
|
358 |
+
prompt: str,
|
359 |
+
image: Optional[Image] = None,
|
360 |
+
height: Optional[int] = None,
|
361 |
+
width: Optional[int] = None,
|
362 |
+
num_frames: Optional[int] = None,
|
363 |
+
num_inference_steps: int = 50,
|
364 |
+
generator: Optional[torch.Generator] = None,
|
365 |
+
**kwargs,
|
366 |
+
) -> List[ArtifactType]:
|
367 |
+
# TODO(aryan): add support for more parameters
|
368 |
+
if image is not None:
|
369 |
+
pipeline = CogVideoXImageToVideoPipeline.from_pipe(pipeline)
|
370 |
+
|
371 |
+
generation_kwargs = {
|
372 |
+
"prompt": prompt,
|
373 |
+
"image": image,
|
374 |
+
"height": height,
|
375 |
+
"width": width,
|
376 |
+
"num_frames": num_frames,
|
377 |
+
"num_inference_steps": num_inference_steps,
|
378 |
+
"generator": generator,
|
379 |
+
"return_dict": True,
|
380 |
+
"output_type": "pil",
|
381 |
+
}
|
382 |
+
generation_kwargs = get_non_null_items(generation_kwargs)
|
383 |
+
video = pipeline(**generation_kwargs).frames[0]
|
384 |
+
return [data.VideoArtifact(value=video)]
|
385 |
+
|
386 |
+
def _save_lora_weights(
|
387 |
+
self,
|
388 |
+
directory: str,
|
389 |
+
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
390 |
+
scheduler: Optional[SchedulerType] = None,
|
391 |
+
*args,
|
392 |
+
**kwargs,
|
393 |
+
) -> None:
|
394 |
+
# TODO(aryan): this needs refactoring
|
395 |
+
if transformer_state_dict is not None:
|
396 |
+
CogVideoXPipeline.save_lora_weights(directory, transformer_state_dict, safe_serialization=True)
|
397 |
+
if scheduler is not None:
|
398 |
+
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
399 |
+
|
400 |
+
def _save_model(
|
401 |
+
self,
|
402 |
+
directory: str,
|
403 |
+
transformer: CogVideoXTransformer3DModel,
|
404 |
+
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
405 |
+
scheduler: Optional[SchedulerType] = None,
|
406 |
+
) -> None:
|
407 |
+
# TODO(aryan): this needs refactoring
|
408 |
+
if transformer_state_dict is not None:
|
409 |
+
with init_empty_weights():
|
410 |
+
transformer_copy = CogVideoXTransformer3DModel.from_config(transformer.config)
|
411 |
+
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
|
412 |
+
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
|
413 |
+
if scheduler is not None:
|
414 |
+
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
415 |
+
|
416 |
+
@staticmethod
|
417 |
+
def _pad_frames(latents: torch.Tensor, patch_size_t: int) -> torch.Tensor:
|
418 |
+
num_frames = latents.size(1)
|
419 |
+
additional_frames = patch_size_t - (num_frames % patch_size_t)
|
420 |
+
if additional_frames > 0:
|
421 |
+
last_frame = latents[:, -1:]
|
422 |
+
padding_frames = last_frame.expand(-1, additional_frames, -1, -1, -1)
|
423 |
+
latents = torch.cat([latents, padding_frames], dim=1)
|
424 |
+
return latents
|
finetrainers/models/cogvideox/full_finetune.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
from diffusers import CogVideoXPipeline
|
2 |
-
|
3 |
-
from .lora import (
|
4 |
-
calculate_noisy_latents,
|
5 |
-
collate_fn_t2v,
|
6 |
-
forward_pass,
|
7 |
-
initialize_pipeline,
|
8 |
-
load_condition_models,
|
9 |
-
load_diffusion_models,
|
10 |
-
load_latent_models,
|
11 |
-
post_latent_preparation,
|
12 |
-
prepare_conditions,
|
13 |
-
prepare_latents,
|
14 |
-
validation,
|
15 |
-
)
|
16 |
-
|
17 |
-
|
18 |
-
# TODO(aryan): refactor into model specs for better re-use
|
19 |
-
COGVIDEOX_T2V_FULL_FINETUNE_CONFIG = {
|
20 |
-
"pipeline_cls": CogVideoXPipeline,
|
21 |
-
"load_condition_models": load_condition_models,
|
22 |
-
"load_latent_models": load_latent_models,
|
23 |
-
"load_diffusion_models": load_diffusion_models,
|
24 |
-
"initialize_pipeline": initialize_pipeline,
|
25 |
-
"prepare_conditions": prepare_conditions,
|
26 |
-
"prepare_latents": prepare_latents,
|
27 |
-
"post_latent_preparation": post_latent_preparation,
|
28 |
-
"collate_fn": collate_fn_t2v,
|
29 |
-
"calculate_noisy_latents": calculate_noisy_latents,
|
30 |
-
"forward_pass": forward_pass,
|
31 |
-
"validation": validation,
|
32 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/cogvideox/lora.py
DELETED
@@ -1,334 +0,0 @@
|
|
1 |
-
from typing import Any, Dict, List, Optional, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from diffusers import AutoencoderKLCogVideoX, CogVideoXDDIMScheduler, CogVideoXPipeline, CogVideoXTransformer3DModel
|
5 |
-
from PIL import Image
|
6 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
7 |
-
|
8 |
-
from .utils import prepare_rotary_positional_embeddings
|
9 |
-
|
10 |
-
|
11 |
-
def load_condition_models(
|
12 |
-
model_id: str = "THUDM/CogVideoX-5b",
|
13 |
-
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
14 |
-
revision: Optional[str] = None,
|
15 |
-
cache_dir: Optional[str] = None,
|
16 |
-
**kwargs,
|
17 |
-
):
|
18 |
-
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, cache_dir=cache_dir)
|
19 |
-
text_encoder = T5EncoderModel.from_pretrained(
|
20 |
-
model_id, subfolder="text_encoder", torch_dtype=text_encoder_dtype, revision=revision, cache_dir=cache_dir
|
21 |
-
)
|
22 |
-
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
|
23 |
-
|
24 |
-
|
25 |
-
def load_latent_models(
|
26 |
-
model_id: str = "THUDM/CogVideoX-5b",
|
27 |
-
vae_dtype: torch.dtype = torch.bfloat16,
|
28 |
-
revision: Optional[str] = None,
|
29 |
-
cache_dir: Optional[str] = None,
|
30 |
-
**kwargs,
|
31 |
-
):
|
32 |
-
vae = AutoencoderKLCogVideoX.from_pretrained(
|
33 |
-
model_id, subfolder="vae", torch_dtype=vae_dtype, revision=revision, cache_dir=cache_dir
|
34 |
-
)
|
35 |
-
return {"vae": vae}
|
36 |
-
|
37 |
-
|
38 |
-
def load_diffusion_models(
|
39 |
-
model_id: str = "THUDM/CogVideoX-5b",
|
40 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
41 |
-
revision: Optional[str] = None,
|
42 |
-
cache_dir: Optional[str] = None,
|
43 |
-
**kwargs,
|
44 |
-
):
|
45 |
-
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
46 |
-
model_id, subfolder="transformer", torch_dtype=transformer_dtype, revision=revision, cache_dir=cache_dir
|
47 |
-
)
|
48 |
-
scheduler = CogVideoXDDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
49 |
-
return {"transformer": transformer, "scheduler": scheduler}
|
50 |
-
|
51 |
-
|
52 |
-
def initialize_pipeline(
|
53 |
-
model_id: str = "THUDM/CogVideoX-5b",
|
54 |
-
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
55 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
56 |
-
vae_dtype: torch.dtype = torch.bfloat16,
|
57 |
-
tokenizer: Optional[T5Tokenizer] = None,
|
58 |
-
text_encoder: Optional[T5EncoderModel] = None,
|
59 |
-
transformer: Optional[CogVideoXTransformer3DModel] = None,
|
60 |
-
vae: Optional[AutoencoderKLCogVideoX] = None,
|
61 |
-
scheduler: Optional[CogVideoXDDIMScheduler] = None,
|
62 |
-
device: Optional[torch.device] = None,
|
63 |
-
revision: Optional[str] = None,
|
64 |
-
cache_dir: Optional[str] = None,
|
65 |
-
enable_slicing: bool = False,
|
66 |
-
enable_tiling: bool = False,
|
67 |
-
enable_model_cpu_offload: bool = False,
|
68 |
-
is_training: bool = False,
|
69 |
-
**kwargs,
|
70 |
-
) -> CogVideoXPipeline:
|
71 |
-
component_name_pairs = [
|
72 |
-
("tokenizer", tokenizer),
|
73 |
-
("text_encoder", text_encoder),
|
74 |
-
("transformer", transformer),
|
75 |
-
("vae", vae),
|
76 |
-
("scheduler", scheduler),
|
77 |
-
]
|
78 |
-
components = {}
|
79 |
-
for name, component in component_name_pairs:
|
80 |
-
if component is not None:
|
81 |
-
components[name] = component
|
82 |
-
|
83 |
-
pipe = CogVideoXPipeline.from_pretrained(model_id, **components, revision=revision, cache_dir=cache_dir)
|
84 |
-
pipe.text_encoder = pipe.text_encoder.to(dtype=text_encoder_dtype)
|
85 |
-
pipe.vae = pipe.vae.to(dtype=vae_dtype)
|
86 |
-
|
87 |
-
# The transformer should already be in the correct dtype when training, so we don't need to cast it here.
|
88 |
-
# If we cast, whilst using fp8 layerwise upcasting hooks, it will lead to an error in the training during
|
89 |
-
# DDP optimizer step.
|
90 |
-
if not is_training:
|
91 |
-
pipe.transformer = pipe.transformer.to(dtype=transformer_dtype)
|
92 |
-
|
93 |
-
if enable_slicing:
|
94 |
-
pipe.vae.enable_slicing()
|
95 |
-
if enable_tiling:
|
96 |
-
pipe.vae.enable_tiling()
|
97 |
-
|
98 |
-
if enable_model_cpu_offload:
|
99 |
-
pipe.enable_model_cpu_offload(device=device)
|
100 |
-
else:
|
101 |
-
pipe.to(device=device)
|
102 |
-
|
103 |
-
return pipe
|
104 |
-
|
105 |
-
|
106 |
-
def prepare_conditions(
|
107 |
-
tokenizer,
|
108 |
-
text_encoder,
|
109 |
-
prompt: Union[str, List[str]],
|
110 |
-
device: Optional[torch.device] = None,
|
111 |
-
dtype: Optional[torch.dtype] = None,
|
112 |
-
max_sequence_length: int = 226, # TODO: this should be configurable
|
113 |
-
**kwargs,
|
114 |
-
):
|
115 |
-
device = device or text_encoder.device
|
116 |
-
dtype = dtype or text_encoder.dtype
|
117 |
-
return _get_t5_prompt_embeds(
|
118 |
-
tokenizer=tokenizer,
|
119 |
-
text_encoder=text_encoder,
|
120 |
-
prompt=prompt,
|
121 |
-
max_sequence_length=max_sequence_length,
|
122 |
-
device=device,
|
123 |
-
dtype=dtype,
|
124 |
-
)
|
125 |
-
|
126 |
-
|
127 |
-
def prepare_latents(
|
128 |
-
vae: AutoencoderKLCogVideoX,
|
129 |
-
image_or_video: torch.Tensor,
|
130 |
-
device: Optional[torch.device] = None,
|
131 |
-
dtype: Optional[torch.dtype] = None,
|
132 |
-
generator: Optional[torch.Generator] = None,
|
133 |
-
precompute: bool = False,
|
134 |
-
**kwargs,
|
135 |
-
) -> torch.Tensor:
|
136 |
-
device = device or vae.device
|
137 |
-
dtype = dtype or vae.dtype
|
138 |
-
|
139 |
-
if image_or_video.ndim == 4:
|
140 |
-
image_or_video = image_or_video.unsqueeze(2)
|
141 |
-
assert image_or_video.ndim == 5, f"Expected 5D tensor, got {image_or_video.ndim}D tensor"
|
142 |
-
|
143 |
-
image_or_video = image_or_video.to(device=device, dtype=vae.dtype)
|
144 |
-
image_or_video = image_or_video.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
|
145 |
-
if not precompute:
|
146 |
-
latents = vae.encode(image_or_video).latent_dist.sample(generator=generator)
|
147 |
-
if not vae.config.invert_scale_latents:
|
148 |
-
latents = latents * vae.config.scaling_factor
|
149 |
-
# For training Cog 1.5, we don't need to handle the scaling factor here.
|
150 |
-
# The CogVideoX team forgot to multiply here, so we should not do it too. Invert scale latents
|
151 |
-
# is probably only needed for image-to-video training.
|
152 |
-
# TODO(aryan): investigate this
|
153 |
-
# else:
|
154 |
-
# latents = 1 / vae.config.scaling_factor * latents
|
155 |
-
latents = latents.to(dtype=dtype)
|
156 |
-
return {"latents": latents}
|
157 |
-
else:
|
158 |
-
# handle vae scaling in the `train()` method directly.
|
159 |
-
if vae.use_slicing and image_or_video.shape[0] > 1:
|
160 |
-
encoded_slices = [vae._encode(x_slice) for x_slice in image_or_video.split(1)]
|
161 |
-
h = torch.cat(encoded_slices)
|
162 |
-
else:
|
163 |
-
h = vae._encode(image_or_video)
|
164 |
-
return {"latents": h}
|
165 |
-
|
166 |
-
|
167 |
-
def post_latent_preparation(
|
168 |
-
vae_config: Dict[str, Any], latents: torch.Tensor, patch_size_t: Optional[int] = None, **kwargs
|
169 |
-
) -> torch.Tensor:
|
170 |
-
if not vae_config.invert_scale_latents:
|
171 |
-
latents = latents * vae_config.scaling_factor
|
172 |
-
# For training Cog 1.5, we don't need to handle the scaling factor here.
|
173 |
-
# The CogVideoX team forgot to multiply here, so we should not do it too. Invert scale latents
|
174 |
-
# is probably only needed for image-to-video training.
|
175 |
-
# TODO(aryan): investigate this
|
176 |
-
# else:
|
177 |
-
# latents = 1 / vae_config.scaling_factor * latents
|
178 |
-
latents = _pad_frames(latents, patch_size_t)
|
179 |
-
latents = latents.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
|
180 |
-
return {"latents": latents}
|
181 |
-
|
182 |
-
|
183 |
-
def collate_fn_t2v(batch: List[List[Dict[str, torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
184 |
-
return {
|
185 |
-
"prompts": [x["prompt"] for x in batch[0]],
|
186 |
-
"videos": torch.stack([x["video"] for x in batch[0]]),
|
187 |
-
}
|
188 |
-
|
189 |
-
|
190 |
-
def calculate_noisy_latents(
|
191 |
-
scheduler: CogVideoXDDIMScheduler,
|
192 |
-
noise: torch.Tensor,
|
193 |
-
latents: torch.Tensor,
|
194 |
-
timesteps: torch.LongTensor,
|
195 |
-
) -> torch.Tensor:
|
196 |
-
noisy_latents = scheduler.add_noise(latents, noise, timesteps)
|
197 |
-
return noisy_latents
|
198 |
-
|
199 |
-
|
200 |
-
def forward_pass(
|
201 |
-
transformer: CogVideoXTransformer3DModel,
|
202 |
-
scheduler: CogVideoXDDIMScheduler,
|
203 |
-
prompt_embeds: torch.Tensor,
|
204 |
-
latents: torch.Tensor,
|
205 |
-
noisy_latents: torch.Tensor,
|
206 |
-
timesteps: torch.LongTensor,
|
207 |
-
ofs_emb: Optional[torch.Tensor] = None,
|
208 |
-
**kwargs,
|
209 |
-
) -> torch.Tensor:
|
210 |
-
# Just hardcode for now. In Diffusers, we will refactor such that RoPE would be handled within the model itself.
|
211 |
-
VAE_SPATIAL_SCALE_FACTOR = 8
|
212 |
-
transformer_config = transformer.module.config if hasattr(transformer, "module") else transformer.config
|
213 |
-
batch_size, num_frames, num_channels, height, width = noisy_latents.shape
|
214 |
-
rope_base_height = transformer_config.sample_height * VAE_SPATIAL_SCALE_FACTOR
|
215 |
-
rope_base_width = transformer_config.sample_width * VAE_SPATIAL_SCALE_FACTOR
|
216 |
-
|
217 |
-
image_rotary_emb = (
|
218 |
-
prepare_rotary_positional_embeddings(
|
219 |
-
height=height * VAE_SPATIAL_SCALE_FACTOR,
|
220 |
-
width=width * VAE_SPATIAL_SCALE_FACTOR,
|
221 |
-
num_frames=num_frames,
|
222 |
-
vae_scale_factor_spatial=VAE_SPATIAL_SCALE_FACTOR,
|
223 |
-
patch_size=transformer_config.patch_size,
|
224 |
-
patch_size_t=transformer_config.patch_size_t if hasattr(transformer_config, "patch_size_t") else None,
|
225 |
-
attention_head_dim=transformer_config.attention_head_dim,
|
226 |
-
device=transformer.device,
|
227 |
-
base_height=rope_base_height,
|
228 |
-
base_width=rope_base_width,
|
229 |
-
)
|
230 |
-
if transformer_config.use_rotary_positional_embeddings
|
231 |
-
else None
|
232 |
-
)
|
233 |
-
ofs_emb = None if transformer_config.ofs_embed_dim is None else latents.new_full((batch_size,), fill_value=2.0)
|
234 |
-
|
235 |
-
velocity = transformer(
|
236 |
-
hidden_states=noisy_latents,
|
237 |
-
timestep=timesteps,
|
238 |
-
encoder_hidden_states=prompt_embeds,
|
239 |
-
ofs=ofs_emb,
|
240 |
-
image_rotary_emb=image_rotary_emb,
|
241 |
-
return_dict=False,
|
242 |
-
)[0]
|
243 |
-
# For CogVideoX, the transformer predicts the velocity. The denoised output is calculated by applying the same
|
244 |
-
# code paths as scheduler.get_velocity(), which can be confusing to understand.
|
245 |
-
denoised_latents = scheduler.get_velocity(velocity, noisy_latents, timesteps)
|
246 |
-
|
247 |
-
return {"latents": denoised_latents}
|
248 |
-
|
249 |
-
|
250 |
-
def validation(
|
251 |
-
pipeline: CogVideoXPipeline,
|
252 |
-
prompt: str,
|
253 |
-
image: Optional[Image.Image] = None,
|
254 |
-
video: Optional[List[Image.Image]] = None,
|
255 |
-
height: Optional[int] = None,
|
256 |
-
width: Optional[int] = None,
|
257 |
-
num_frames: Optional[int] = None,
|
258 |
-
num_videos_per_prompt: int = 1,
|
259 |
-
generator: Optional[torch.Generator] = None,
|
260 |
-
**kwargs,
|
261 |
-
):
|
262 |
-
generation_kwargs = {
|
263 |
-
"prompt": prompt,
|
264 |
-
"height": height,
|
265 |
-
"width": width,
|
266 |
-
"num_frames": num_frames,
|
267 |
-
"num_videos_per_prompt": num_videos_per_prompt,
|
268 |
-
"generator": generator,
|
269 |
-
"return_dict": True,
|
270 |
-
"output_type": "pil",
|
271 |
-
}
|
272 |
-
generation_kwargs = {k: v for k, v in generation_kwargs.items() if v is not None}
|
273 |
-
output = pipeline(**generation_kwargs).frames[0]
|
274 |
-
return [("video", output)]
|
275 |
-
|
276 |
-
|
277 |
-
def _get_t5_prompt_embeds(
|
278 |
-
tokenizer: T5Tokenizer,
|
279 |
-
text_encoder: T5EncoderModel,
|
280 |
-
prompt: Union[str, List[str]] = None,
|
281 |
-
max_sequence_length: int = 226,
|
282 |
-
device: Optional[torch.device] = None,
|
283 |
-
dtype: Optional[torch.dtype] = None,
|
284 |
-
):
|
285 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
286 |
-
|
287 |
-
text_inputs = tokenizer(
|
288 |
-
prompt,
|
289 |
-
padding="max_length",
|
290 |
-
max_length=max_sequence_length,
|
291 |
-
truncation=True,
|
292 |
-
add_special_tokens=True,
|
293 |
-
return_tensors="pt",
|
294 |
-
)
|
295 |
-
text_input_ids = text_inputs.input_ids
|
296 |
-
|
297 |
-
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
|
298 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
299 |
-
|
300 |
-
return {"prompt_embeds": prompt_embeds}
|
301 |
-
|
302 |
-
|
303 |
-
def _pad_frames(latents: torch.Tensor, patch_size_t: int):
|
304 |
-
if patch_size_t is None or patch_size_t == 1:
|
305 |
-
return latents
|
306 |
-
|
307 |
-
# `latents` should be of the following format: [B, C, F, H, W].
|
308 |
-
# For CogVideoX 1.5, the latent frames should be padded to make it divisible by patch_size_t
|
309 |
-
latent_num_frames = latents.shape[2]
|
310 |
-
additional_frames = patch_size_t - latent_num_frames % patch_size_t
|
311 |
-
|
312 |
-
if additional_frames > 0:
|
313 |
-
last_frame = latents[:, :, -1:, :, :]
|
314 |
-
padding_frames = last_frame.repeat(1, 1, additional_frames, 1, 1)
|
315 |
-
latents = torch.cat([latents, padding_frames], dim=2)
|
316 |
-
|
317 |
-
return latents
|
318 |
-
|
319 |
-
|
320 |
-
# TODO(aryan): refactor into model specs for better re-use
|
321 |
-
COGVIDEOX_T2V_LORA_CONFIG = {
|
322 |
-
"pipeline_cls": CogVideoXPipeline,
|
323 |
-
"load_condition_models": load_condition_models,
|
324 |
-
"load_latent_models": load_latent_models,
|
325 |
-
"load_diffusion_models": load_diffusion_models,
|
326 |
-
"initialize_pipeline": initialize_pipeline,
|
327 |
-
"prepare_conditions": prepare_conditions,
|
328 |
-
"prepare_latents": prepare_latents,
|
329 |
-
"post_latent_preparation": post_latent_preparation,
|
330 |
-
"collate_fn": collate_fn_t2v,
|
331 |
-
"calculate_noisy_latents": calculate_noisy_latents,
|
332 |
-
"forward_pass": forward_pass,
|
333 |
-
"validation": validation,
|
334 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/hunyuan_video/__init__.py
CHANGED
@@ -1,2 +1 @@
|
|
1 |
-
from .
|
2 |
-
from .lora import HUNYUAN_VIDEO_T2V_LORA_CONFIG
|
|
|
1 |
+
from .base_specification import HunyuanVideoModelSpecification
|
|
finetrainers/models/hunyuan_video/base_specification.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Any, Dict, List, Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from accelerate import init_empty_weights
|
6 |
+
from diffusers import (
|
7 |
+
AutoencoderKLHunyuanVideo,
|
8 |
+
FlowMatchEulerDiscreteScheduler,
|
9 |
+
HunyuanVideoPipeline,
|
10 |
+
HunyuanVideoTransformer3DModel,
|
11 |
+
)
|
12 |
+
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
|
13 |
+
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, LlamaModel
|
14 |
+
|
15 |
+
from ... import data
|
16 |
+
from ... import functional as FF
|
17 |
+
from ...logging import get_logger
|
18 |
+
from ...processors import CLIPPooledProcessor, LlamaProcessor, ProcessorMixin
|
19 |
+
from ...typing import ArtifactType, SchedulerType
|
20 |
+
from ...utils import get_non_null_items
|
21 |
+
from ..modeling_utils import ModelSpecification
|
22 |
+
|
23 |
+
|
24 |
+
logger = get_logger()
|
25 |
+
|
26 |
+
|
27 |
+
class HunyuanLatentEncodeProcessor(ProcessorMixin):
|
28 |
+
r"""
|
29 |
+
Processor to encode image/video into latents using the HunyuanVideo VAE.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
output_names (`List[str]`):
|
33 |
+
The names of the outputs that the processor returns. The outputs are in the following order:
|
34 |
+
- latents: The latents of the input image/video.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self, output_names: List[str]):
|
38 |
+
super().__init__()
|
39 |
+
self.output_names = output_names
|
40 |
+
assert len(self.output_names) == 1
|
41 |
+
|
42 |
+
def forward(
|
43 |
+
self,
|
44 |
+
vae: AutoencoderKLHunyuanVideo,
|
45 |
+
image: Optional[torch.Tensor] = None,
|
46 |
+
video: Optional[torch.Tensor] = None,
|
47 |
+
generator: Optional[torch.Generator] = None,
|
48 |
+
compute_posterior: bool = True,
|
49 |
+
) -> Dict[str, torch.Tensor]:
|
50 |
+
device = vae.device
|
51 |
+
dtype = vae.dtype
|
52 |
+
|
53 |
+
if image is not None:
|
54 |
+
video = image.unsqueeze(1)
|
55 |
+
|
56 |
+
assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
|
57 |
+
video = video.to(device=device, dtype=vae.dtype)
|
58 |
+
video = video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
|
59 |
+
|
60 |
+
if compute_posterior:
|
61 |
+
latents = vae.encode(video).latent_dist.sample(generator=generator)
|
62 |
+
latents = latents.to(dtype=dtype)
|
63 |
+
else:
|
64 |
+
if vae.use_slicing and video.shape[0] > 1:
|
65 |
+
encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
|
66 |
+
moments = torch.cat(encoded_slices)
|
67 |
+
else:
|
68 |
+
moments = vae._encode(video)
|
69 |
+
latents = moments.to(dtype=dtype)
|
70 |
+
|
71 |
+
return {self.output_names[0]: latents}
|
72 |
+
|
73 |
+
|
74 |
+
class HunyuanVideoModelSpecification(ModelSpecification):
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
pretrained_model_name_or_path: str = "hunyuanvideo-community/HunyuanVideo",
|
78 |
+
tokenizer_id: Optional[str] = None,
|
79 |
+
text_encoder_id: Optional[str] = None,
|
80 |
+
transformer_id: Optional[str] = None,
|
81 |
+
vae_id: Optional[str] = None,
|
82 |
+
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
83 |
+
transformer_dtype: torch.dtype = torch.bfloat16,
|
84 |
+
vae_dtype: torch.dtype = torch.bfloat16,
|
85 |
+
revision: Optional[str] = None,
|
86 |
+
cache_dir: Optional[str] = None,
|
87 |
+
condition_model_processors: List[ProcessorMixin] = None,
|
88 |
+
latent_model_processors: List[ProcessorMixin] = None,
|
89 |
+
**kwargs,
|
90 |
+
) -> None:
|
91 |
+
super().__init__(
|
92 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
93 |
+
tokenizer_id=tokenizer_id,
|
94 |
+
text_encoder_id=text_encoder_id,
|
95 |
+
transformer_id=transformer_id,
|
96 |
+
vae_id=vae_id,
|
97 |
+
text_encoder_dtype=text_encoder_dtype,
|
98 |
+
transformer_dtype=transformer_dtype,
|
99 |
+
vae_dtype=vae_dtype,
|
100 |
+
revision=revision,
|
101 |
+
cache_dir=cache_dir,
|
102 |
+
)
|
103 |
+
|
104 |
+
if condition_model_processors is None:
|
105 |
+
condition_model_processors = [
|
106 |
+
LlamaProcessor(["encoder_hidden_states", "encoder_attention_mask"]),
|
107 |
+
CLIPPooledProcessor(
|
108 |
+
["pooled_projections"],
|
109 |
+
input_names={"tokenizer_2": "tokenizer", "text_encoder_2": "text_encoder"},
|
110 |
+
),
|
111 |
+
]
|
112 |
+
if latent_model_processors is None:
|
113 |
+
latent_model_processors = [HunyuanLatentEncodeProcessor(["latents"])]
|
114 |
+
|
115 |
+
self.condition_model_processors = condition_model_processors
|
116 |
+
self.latent_model_processors = latent_model_processors
|
117 |
+
|
118 |
+
@property
|
119 |
+
def _resolution_dim_keys(self):
|
120 |
+
# TODO
|
121 |
+
return {
|
122 |
+
"latents": (2, 3, 4),
|
123 |
+
}
|
124 |
+
|
125 |
+
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
|
126 |
+
if self.tokenizer_id is not None:
|
127 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
128 |
+
self.tokenizer_id, revision=self.revision, cache_dir=self.cache_dir
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
132 |
+
self.pretrained_model_name_or_path,
|
133 |
+
subfolder="tokenizer",
|
134 |
+
revision=self.revision,
|
135 |
+
cache_dir=self.cache_dir,
|
136 |
+
)
|
137 |
+
|
138 |
+
if self.tokenizer_2_id is not None:
|
139 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
140 |
+
self.tokenizer_2_id, revision=self.revision, cache_dir=self.cache_dir
|
141 |
+
)
|
142 |
+
else:
|
143 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
144 |
+
self.pretrained_model_name_or_path,
|
145 |
+
subfolder="tokenizer_2",
|
146 |
+
revision=self.revision,
|
147 |
+
cache_dir=self.cache_dir,
|
148 |
+
)
|
149 |
+
|
150 |
+
if self.text_encoder_id is not None:
|
151 |
+
text_encoder = LlamaModel.from_pretrained(
|
152 |
+
self.text_encoder_id,
|
153 |
+
torch_dtype=self.text_encoder_dtype,
|
154 |
+
revision=self.revision,
|
155 |
+
cache_dir=self.cache_dir,
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
text_encoder = LlamaModel.from_pretrained(
|
159 |
+
self.pretrained_model_name_or_path,
|
160 |
+
subfolder="text_encoder",
|
161 |
+
torch_dtype=self.text_encoder_dtype,
|
162 |
+
revision=self.revision,
|
163 |
+
cache_dir=self.cache_dir,
|
164 |
+
)
|
165 |
+
|
166 |
+
if self.text_encoder_2_id is not None:
|
167 |
+
text_encoder_2 = CLIPTextModel.from_pretrained(
|
168 |
+
self.text_encoder_2_id,
|
169 |
+
torch_dtype=self.text_encoder_2_dtype,
|
170 |
+
revision=self.revision,
|
171 |
+
cache_dir=self.cache_dir,
|
172 |
+
)
|
173 |
+
else:
|
174 |
+
text_encoder_2 = CLIPTextModel.from_pretrained(
|
175 |
+
self.pretrained_model_name_or_path,
|
176 |
+
subfolder="text_encoder_2",
|
177 |
+
torch_dtype=self.text_encoder_2_dtype,
|
178 |
+
revision=self.revision,
|
179 |
+
cache_dir=self.cache_dir,
|
180 |
+
)
|
181 |
+
|
182 |
+
return {
|
183 |
+
"tokenizer": tokenizer,
|
184 |
+
"tokenizer_2": tokenizer_2,
|
185 |
+
"text_encoder": text_encoder,
|
186 |
+
"text_encoder_2": text_encoder_2,
|
187 |
+
}
|
188 |
+
|
189 |
+
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
|
190 |
+
if self.vae_id is not None:
|
191 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
192 |
+
self.vae_id,
|
193 |
+
torch_dtype=self.vae_dtype,
|
194 |
+
revision=self.revision,
|
195 |
+
cache_dir=self.cache_dir,
|
196 |
+
)
|
197 |
+
else:
|
198 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
199 |
+
self.pretrained_model_name_or_path,
|
200 |
+
subfolder="vae",
|
201 |
+
torch_dtype=self.vae_dtype,
|
202 |
+
revision=self.revision,
|
203 |
+
cache_dir=self.cache_dir,
|
204 |
+
)
|
205 |
+
|
206 |
+
return {"vae": vae}
|
207 |
+
|
208 |
+
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
|
209 |
+
if self.transformer_id is not None:
|
210 |
+
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
211 |
+
self.transformer_id,
|
212 |
+
torch_dtype=self.transformer_dtype,
|
213 |
+
revision=self.revision,
|
214 |
+
cache_dir=self.cache_dir,
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
218 |
+
self.pretrained_model_name_or_path,
|
219 |
+
subfolder="transformer",
|
220 |
+
torch_dtype=self.transformer_dtype,
|
221 |
+
revision=self.revision,
|
222 |
+
cache_dir=self.cache_dir,
|
223 |
+
)
|
224 |
+
|
225 |
+
scheduler = FlowMatchEulerDiscreteScheduler()
|
226 |
+
|
227 |
+
return {"transformer": transformer, "scheduler": scheduler}
|
228 |
+
|
229 |
+
def load_pipeline(
|
230 |
+
self,
|
231 |
+
tokenizer: Optional[AutoTokenizer] = None,
|
232 |
+
tokenizer_2: Optional[CLIPTokenizer] = None,
|
233 |
+
text_encoder: Optional[LlamaModel] = None,
|
234 |
+
text_encoder_2: Optional[CLIPTextModel] = None,
|
235 |
+
transformer: Optional[HunyuanVideoTransformer3DModel] = None,
|
236 |
+
vae: Optional[AutoencoderKLHunyuanVideo] = None,
|
237 |
+
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
|
238 |
+
enable_slicing: bool = False,
|
239 |
+
enable_tiling: bool = False,
|
240 |
+
enable_model_cpu_offload: bool = False,
|
241 |
+
training: bool = False,
|
242 |
+
**kwargs,
|
243 |
+
) -> HunyuanVideoPipeline:
|
244 |
+
components = {
|
245 |
+
"tokenizer": tokenizer,
|
246 |
+
"tokenizer_2": tokenizer_2,
|
247 |
+
"text_encoder": text_encoder,
|
248 |
+
"text_encoder_2": text_encoder_2,
|
249 |
+
"transformer": transformer,
|
250 |
+
"vae": vae,
|
251 |
+
"scheduler": scheduler,
|
252 |
+
}
|
253 |
+
components = get_non_null_items(components)
|
254 |
+
|
255 |
+
pipe = HunyuanVideoPipeline.from_pretrained(
|
256 |
+
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
|
257 |
+
)
|
258 |
+
pipe.text_encoder.to(self.text_encoder_dtype)
|
259 |
+
pipe.text_encoder_2.to(self.text_encoder_2_dtype)
|
260 |
+
pipe.vae.to(self.vae_dtype)
|
261 |
+
|
262 |
+
if not training:
|
263 |
+
pipe.transformer.to(self.transformer_dtype)
|
264 |
+
|
265 |
+
if enable_slicing:
|
266 |
+
pipe.vae.enable_slicing()
|
267 |
+
if enable_tiling:
|
268 |
+
pipe.vae.enable_tiling()
|
269 |
+
if enable_model_cpu_offload:
|
270 |
+
pipe.enable_model_cpu_offload()
|
271 |
+
|
272 |
+
return pipe
|
273 |
+
|
274 |
+
@torch.no_grad()
|
275 |
+
def prepare_conditions(
|
276 |
+
self,
|
277 |
+
tokenizer: AutoTokenizer,
|
278 |
+
tokenizer_2: CLIPTokenizer,
|
279 |
+
text_encoder: LlamaModel,
|
280 |
+
text_encoder_2: CLIPTextModel,
|
281 |
+
caption: str,
|
282 |
+
max_sequence_length: int = 256,
|
283 |
+
**kwargs,
|
284 |
+
) -> Dict[str, Any]:
|
285 |
+
conditions = {
|
286 |
+
"tokenizer": tokenizer,
|
287 |
+
"tokenizer_2": tokenizer_2,
|
288 |
+
"text_encoder": text_encoder,
|
289 |
+
"text_encoder_2": text_encoder_2,
|
290 |
+
"caption": caption,
|
291 |
+
"max_sequence_length": max_sequence_length,
|
292 |
+
**kwargs,
|
293 |
+
}
|
294 |
+
input_keys = set(conditions.keys())
|
295 |
+
conditions = super().prepare_conditions(**conditions)
|
296 |
+
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
297 |
+
return conditions
|
298 |
+
|
299 |
+
@torch.no_grad()
|
300 |
+
def prepare_latents(
|
301 |
+
self,
|
302 |
+
vae: AutoencoderKLHunyuanVideo,
|
303 |
+
image: Optional[torch.Tensor] = None,
|
304 |
+
video: Optional[torch.Tensor] = None,
|
305 |
+
generator: Optional[torch.Generator] = None,
|
306 |
+
compute_posterior: bool = True,
|
307 |
+
**kwargs,
|
308 |
+
) -> Dict[str, torch.Tensor]:
|
309 |
+
conditions = {
|
310 |
+
"vae": vae,
|
311 |
+
"image": image,
|
312 |
+
"video": video,
|
313 |
+
"generator": generator,
|
314 |
+
"compute_posterior": compute_posterior,
|
315 |
+
**kwargs,
|
316 |
+
}
|
317 |
+
input_keys = set(conditions.keys())
|
318 |
+
conditions = super().prepare_latents(**conditions)
|
319 |
+
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
320 |
+
return conditions
|
321 |
+
|
322 |
+
def forward(
|
323 |
+
self,
|
324 |
+
transformer: HunyuanVideoTransformer3DModel,
|
325 |
+
condition_model_conditions: Dict[str, torch.Tensor],
|
326 |
+
latent_model_conditions: Dict[str, torch.Tensor],
|
327 |
+
sigmas: torch.Tensor,
|
328 |
+
guidance: float = 1.0,
|
329 |
+
generator: Optional[torch.Generator] = None,
|
330 |
+
compute_posterior: bool = True,
|
331 |
+
**kwargs,
|
332 |
+
) -> Tuple[torch.Tensor, ...]:
|
333 |
+
if compute_posterior:
|
334 |
+
latents = latent_model_conditions.pop("latents")
|
335 |
+
else:
|
336 |
+
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
|
337 |
+
latents = posterior.sample(generator=generator)
|
338 |
+
del posterior
|
339 |
+
|
340 |
+
latents = latents * self.vae_config.scaling_factor
|
341 |
+
noise = torch.zeros_like(latents).normal_(generator=generator)
|
342 |
+
noisy_latents = FF.flow_match_xt(latents, noise, sigmas)
|
343 |
+
|
344 |
+
timesteps = (sigmas.flatten() * 1000.0).long()
|
345 |
+
guidance = latents.new_full((latents.size(0),), fill_value=guidance) * 1000.0
|
346 |
+
|
347 |
+
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
|
348 |
+
latent_model_conditions["guidance"] = guidance
|
349 |
+
|
350 |
+
pred = transformer(
|
351 |
+
**latent_model_conditions,
|
352 |
+
**condition_model_conditions,
|
353 |
+
timestep=timesteps,
|
354 |
+
return_dict=False,
|
355 |
+
)[0]
|
356 |
+
target = FF.flow_match_target(noise, latents)
|
357 |
+
|
358 |
+
return pred, target, sigmas
|
359 |
+
|
360 |
+
def validation(
|
361 |
+
self,
|
362 |
+
pipeline: HunyuanVideoPipeline,
|
363 |
+
prompt: str,
|
364 |
+
height: Optional[int] = None,
|
365 |
+
width: Optional[int] = None,
|
366 |
+
num_frames: Optional[int] = None,
|
367 |
+
num_inference_steps: int = 50,
|
368 |
+
generator: Optional[torch.Generator] = None,
|
369 |
+
**kwargs,
|
370 |
+
) -> List[ArtifactType]:
|
371 |
+
generation_kwargs = {
|
372 |
+
"prompt": prompt,
|
373 |
+
"height": height,
|
374 |
+
"width": width,
|
375 |
+
"num_frames": num_frames,
|
376 |
+
"num_inference_steps": num_inference_steps,
|
377 |
+
"generator": generator,
|
378 |
+
"return_dict": True,
|
379 |
+
"output_type": "pil",
|
380 |
+
}
|
381 |
+
generation_kwargs = get_non_null_items(generation_kwargs)
|
382 |
+
video = pipeline(**generation_kwargs).frames[0]
|
383 |
+
return [data.VideoArtifact(value=video)]
|
384 |
+
|
385 |
+
def _save_lora_weights(
|
386 |
+
self,
|
387 |
+
directory: str,
|
388 |
+
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
389 |
+
scheduler: Optional[SchedulerType] = None,
|
390 |
+
*args,
|
391 |
+
**kwargs,
|
392 |
+
) -> None:
|
393 |
+
# TODO(aryan): this needs refactoring
|
394 |
+
if transformer_state_dict is not None:
|
395 |
+
HunyuanVideoPipeline.save_lora_weights(directory, transformer_state_dict, safe_serialization=True)
|
396 |
+
if scheduler is not None:
|
397 |
+
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
398 |
+
|
399 |
+
def _save_model(
|
400 |
+
self,
|
401 |
+
directory: str,
|
402 |
+
transformer: HunyuanVideoTransformer3DModel,
|
403 |
+
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
404 |
+
scheduler: Optional[SchedulerType] = None,
|
405 |
+
) -> None:
|
406 |
+
# TODO(aryan): this needs refactoring
|
407 |
+
if transformer_state_dict is not None:
|
408 |
+
with init_empty_weights():
|
409 |
+
transformer_copy = HunyuanVideoTransformer3DModel.from_config(transformer.config)
|
410 |
+
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
|
411 |
+
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
|
412 |
+
if scheduler is not None:
|
413 |
+
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
finetrainers/models/hunyuan_video/full_finetune.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
from diffusers import HunyuanVideoPipeline
|
2 |
-
|
3 |
-
from .lora import (
|
4 |
-
collate_fn_t2v,
|
5 |
-
forward_pass,
|
6 |
-
initialize_pipeline,
|
7 |
-
load_condition_models,
|
8 |
-
load_diffusion_models,
|
9 |
-
load_latent_models,
|
10 |
-
post_latent_preparation,
|
11 |
-
prepare_conditions,
|
12 |
-
prepare_latents,
|
13 |
-
validation,
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
# TODO(aryan): refactor into model specs for better re-use
|
18 |
-
HUNYUAN_VIDEO_T2V_FULL_FINETUNE_CONFIG = {
|
19 |
-
"pipeline_cls": HunyuanVideoPipeline,
|
20 |
-
"load_condition_models": load_condition_models,
|
21 |
-
"load_latent_models": load_latent_models,
|
22 |
-
"load_diffusion_models": load_diffusion_models,
|
23 |
-
"initialize_pipeline": initialize_pipeline,
|
24 |
-
"prepare_conditions": prepare_conditions,
|
25 |
-
"prepare_latents": prepare_latents,
|
26 |
-
"post_latent_preparation": post_latent_preparation,
|
27 |
-
"collate_fn": collate_fn_t2v,
|
28 |
-
"forward_pass": forward_pass,
|
29 |
-
"validation": validation,
|
30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/hunyuan_video/lora.py
DELETED
@@ -1,368 +0,0 @@
|
|
1 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
from accelerate.logging import get_logger
|
6 |
-
from diffusers import (
|
7 |
-
AutoencoderKLHunyuanVideo,
|
8 |
-
FlowMatchEulerDiscreteScheduler,
|
9 |
-
HunyuanVideoPipeline,
|
10 |
-
HunyuanVideoTransformer3DModel,
|
11 |
-
)
|
12 |
-
from PIL import Image
|
13 |
-
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizer
|
14 |
-
|
15 |
-
|
16 |
-
logger = get_logger("finetrainers") # pylint: disable=invalid-name
|
17 |
-
|
18 |
-
|
19 |
-
def load_condition_models(
|
20 |
-
model_id: str = "hunyuanvideo-community/HunyuanVideo",
|
21 |
-
text_encoder_dtype: torch.dtype = torch.float16,
|
22 |
-
text_encoder_2_dtype: torch.dtype = torch.float16,
|
23 |
-
revision: Optional[str] = None,
|
24 |
-
cache_dir: Optional[str] = None,
|
25 |
-
**kwargs,
|
26 |
-
) -> Dict[str, nn.Module]:
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, cache_dir=cache_dir)
|
28 |
-
text_encoder = LlamaModel.from_pretrained(
|
29 |
-
model_id, subfolder="text_encoder", torch_dtype=text_encoder_dtype, revision=revision, cache_dir=cache_dir
|
30 |
-
)
|
31 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
32 |
-
model_id, subfolder="tokenizer_2", revision=revision, cache_dir=cache_dir
|
33 |
-
)
|
34 |
-
text_encoder_2 = CLIPTextModel.from_pretrained(
|
35 |
-
model_id, subfolder="text_encoder_2", torch_dtype=text_encoder_2_dtype, revision=revision, cache_dir=cache_dir
|
36 |
-
)
|
37 |
-
return {
|
38 |
-
"tokenizer": tokenizer,
|
39 |
-
"text_encoder": text_encoder,
|
40 |
-
"tokenizer_2": tokenizer_2,
|
41 |
-
"text_encoder_2": text_encoder_2,
|
42 |
-
}
|
43 |
-
|
44 |
-
|
45 |
-
def load_latent_models(
|
46 |
-
model_id: str = "hunyuanvideo-community/HunyuanVideo",
|
47 |
-
vae_dtype: torch.dtype = torch.float16,
|
48 |
-
revision: Optional[str] = None,
|
49 |
-
cache_dir: Optional[str] = None,
|
50 |
-
**kwargs,
|
51 |
-
) -> Dict[str, nn.Module]:
|
52 |
-
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
53 |
-
model_id, subfolder="vae", torch_dtype=vae_dtype, revision=revision, cache_dir=cache_dir
|
54 |
-
)
|
55 |
-
return {"vae": vae}
|
56 |
-
|
57 |
-
|
58 |
-
def load_diffusion_models(
|
59 |
-
model_id: str = "hunyuanvideo-community/HunyuanVideo",
|
60 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
61 |
-
shift: float = 1.0,
|
62 |
-
revision: Optional[str] = None,
|
63 |
-
cache_dir: Optional[str] = None,
|
64 |
-
**kwargs,
|
65 |
-
) -> Dict[str, Union[nn.Module, FlowMatchEulerDiscreteScheduler]]:
|
66 |
-
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
67 |
-
model_id, subfolder="transformer", torch_dtype=transformer_dtype, revision=revision, cache_dir=cache_dir
|
68 |
-
)
|
69 |
-
scheduler = FlowMatchEulerDiscreteScheduler(shift=shift)
|
70 |
-
return {"transformer": transformer, "scheduler": scheduler}
|
71 |
-
|
72 |
-
|
73 |
-
def initialize_pipeline(
|
74 |
-
model_id: str = "hunyuanvideo-community/HunyuanVideo",
|
75 |
-
text_encoder_dtype: torch.dtype = torch.float16,
|
76 |
-
text_encoder_2_dtype: torch.dtype = torch.float16,
|
77 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
78 |
-
vae_dtype: torch.dtype = torch.float16,
|
79 |
-
tokenizer: Optional[LlamaTokenizer] = None,
|
80 |
-
text_encoder: Optional[LlamaModel] = None,
|
81 |
-
tokenizer_2: Optional[CLIPTokenizer] = None,
|
82 |
-
text_encoder_2: Optional[CLIPTextModel] = None,
|
83 |
-
transformer: Optional[HunyuanVideoTransformer3DModel] = None,
|
84 |
-
vae: Optional[AutoencoderKLHunyuanVideo] = None,
|
85 |
-
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
|
86 |
-
device: Optional[torch.device] = None,
|
87 |
-
revision: Optional[str] = None,
|
88 |
-
cache_dir: Optional[str] = None,
|
89 |
-
enable_slicing: bool = False,
|
90 |
-
enable_tiling: bool = False,
|
91 |
-
enable_model_cpu_offload: bool = False,
|
92 |
-
is_training: bool = False,
|
93 |
-
**kwargs,
|
94 |
-
) -> HunyuanVideoPipeline:
|
95 |
-
component_name_pairs = [
|
96 |
-
("tokenizer", tokenizer),
|
97 |
-
("text_encoder", text_encoder),
|
98 |
-
("tokenizer_2", tokenizer_2),
|
99 |
-
("text_encoder_2", text_encoder_2),
|
100 |
-
("transformer", transformer),
|
101 |
-
("vae", vae),
|
102 |
-
("scheduler", scheduler),
|
103 |
-
]
|
104 |
-
components = {}
|
105 |
-
for name, component in component_name_pairs:
|
106 |
-
if component is not None:
|
107 |
-
components[name] = component
|
108 |
-
|
109 |
-
pipe = HunyuanVideoPipeline.from_pretrained(model_id, **components, revision=revision, cache_dir=cache_dir)
|
110 |
-
pipe.text_encoder = pipe.text_encoder.to(dtype=text_encoder_dtype)
|
111 |
-
pipe.text_encoder_2 = pipe.text_encoder_2.to(dtype=text_encoder_2_dtype)
|
112 |
-
pipe.vae = pipe.vae.to(dtype=vae_dtype)
|
113 |
-
|
114 |
-
# The transformer should already be in the correct dtype when training, so we don't need to cast it here.
|
115 |
-
# If we cast, whilst using fp8 layerwise upcasting hooks, it will lead to an error in the training during
|
116 |
-
# DDP optimizer step.
|
117 |
-
if not is_training:
|
118 |
-
pipe.transformer = pipe.transformer.to(dtype=transformer_dtype)
|
119 |
-
|
120 |
-
if enable_slicing:
|
121 |
-
pipe.vae.enable_slicing()
|
122 |
-
if enable_tiling:
|
123 |
-
pipe.vae.enable_tiling()
|
124 |
-
|
125 |
-
if enable_model_cpu_offload:
|
126 |
-
pipe.enable_model_cpu_offload(device=device)
|
127 |
-
else:
|
128 |
-
pipe.to(device=device)
|
129 |
-
|
130 |
-
return pipe
|
131 |
-
|
132 |
-
|
133 |
-
def prepare_conditions(
|
134 |
-
tokenizer: LlamaTokenizer,
|
135 |
-
text_encoder: LlamaModel,
|
136 |
-
tokenizer_2: CLIPTokenizer,
|
137 |
-
text_encoder_2: CLIPTextModel,
|
138 |
-
prompt: Union[str, List[str]],
|
139 |
-
guidance: float = 1.0,
|
140 |
-
device: Optional[torch.device] = None,
|
141 |
-
dtype: Optional[torch.dtype] = None,
|
142 |
-
max_sequence_length: int = 256,
|
143 |
-
# TODO(aryan): make configurable
|
144 |
-
prompt_template: Dict[str, Any] = {
|
145 |
-
"template": (
|
146 |
-
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
|
147 |
-
"1. The main content and theme of the video."
|
148 |
-
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
|
149 |
-
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
|
150 |
-
"4. background environment, light, style and atmosphere."
|
151 |
-
"5. camera angles, movements, and transitions used in the video:<|eot_id|>"
|
152 |
-
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
|
153 |
-
),
|
154 |
-
"crop_start": 95,
|
155 |
-
},
|
156 |
-
**kwargs,
|
157 |
-
) -> torch.Tensor:
|
158 |
-
device = device or text_encoder.device
|
159 |
-
dtype = dtype or text_encoder.dtype
|
160 |
-
|
161 |
-
if isinstance(prompt, str):
|
162 |
-
prompt = [prompt]
|
163 |
-
|
164 |
-
conditions = {}
|
165 |
-
conditions.update(
|
166 |
-
_get_llama_prompt_embeds(tokenizer, text_encoder, prompt, prompt_template, device, dtype, max_sequence_length)
|
167 |
-
)
|
168 |
-
conditions.update(_get_clip_prompt_embeds(tokenizer_2, text_encoder_2, prompt, device, dtype))
|
169 |
-
|
170 |
-
guidance = torch.tensor([guidance], device=device, dtype=dtype) * 1000.0
|
171 |
-
conditions["guidance"] = guidance
|
172 |
-
|
173 |
-
return conditions
|
174 |
-
|
175 |
-
|
176 |
-
def prepare_latents(
|
177 |
-
vae: AutoencoderKLHunyuanVideo,
|
178 |
-
image_or_video: torch.Tensor,
|
179 |
-
device: Optional[torch.device] = None,
|
180 |
-
dtype: Optional[torch.dtype] = None,
|
181 |
-
generator: Optional[torch.Generator] = None,
|
182 |
-
precompute: bool = False,
|
183 |
-
**kwargs,
|
184 |
-
) -> torch.Tensor:
|
185 |
-
device = device or vae.device
|
186 |
-
dtype = dtype or vae.dtype
|
187 |
-
|
188 |
-
if image_or_video.ndim == 4:
|
189 |
-
image_or_video = image_or_video.unsqueeze(2)
|
190 |
-
assert image_or_video.ndim == 5, f"Expected 5D tensor, got {image_or_video.ndim}D tensor"
|
191 |
-
|
192 |
-
image_or_video = image_or_video.to(device=device, dtype=vae.dtype)
|
193 |
-
image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, C, F, H, W] -> [B, F, C, H, W]
|
194 |
-
if not precompute:
|
195 |
-
latents = vae.encode(image_or_video).latent_dist.sample(generator=generator)
|
196 |
-
latents = latents * vae.config.scaling_factor
|
197 |
-
latents = latents.to(dtype=dtype)
|
198 |
-
return {"latents": latents}
|
199 |
-
else:
|
200 |
-
if vae.use_slicing and image_or_video.shape[0] > 1:
|
201 |
-
encoded_slices = [vae._encode(x_slice) for x_slice in image_or_video.split(1)]
|
202 |
-
h = torch.cat(encoded_slices)
|
203 |
-
else:
|
204 |
-
h = vae._encode(image_or_video)
|
205 |
-
return {"latents": h}
|
206 |
-
|
207 |
-
|
208 |
-
def post_latent_preparation(
|
209 |
-
vae_config: Dict[str, Any],
|
210 |
-
latents: torch.Tensor,
|
211 |
-
**kwargs,
|
212 |
-
) -> torch.Tensor:
|
213 |
-
latents = latents * vae_config.scaling_factor
|
214 |
-
return {"latents": latents}
|
215 |
-
|
216 |
-
|
217 |
-
def collate_fn_t2v(batch: List[List[Dict[str, torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
218 |
-
return {
|
219 |
-
"prompts": [x["prompt"] for x in batch[0]],
|
220 |
-
"videos": torch.stack([x["video"] for x in batch[0]]),
|
221 |
-
}
|
222 |
-
|
223 |
-
|
224 |
-
def forward_pass(
|
225 |
-
transformer: HunyuanVideoTransformer3DModel,
|
226 |
-
prompt_embeds: torch.Tensor,
|
227 |
-
pooled_prompt_embeds: torch.Tensor,
|
228 |
-
prompt_attention_mask: torch.Tensor,
|
229 |
-
guidance: torch.Tensor,
|
230 |
-
latents: torch.Tensor,
|
231 |
-
noisy_latents: torch.Tensor,
|
232 |
-
timesteps: torch.LongTensor,
|
233 |
-
**kwargs,
|
234 |
-
) -> torch.Tensor:
|
235 |
-
denoised_latents = transformer(
|
236 |
-
hidden_states=noisy_latents,
|
237 |
-
timestep=timesteps,
|
238 |
-
encoder_hidden_states=prompt_embeds,
|
239 |
-
pooled_projections=pooled_prompt_embeds,
|
240 |
-
encoder_attention_mask=prompt_attention_mask,
|
241 |
-
guidance=guidance,
|
242 |
-
return_dict=False,
|
243 |
-
)[0]
|
244 |
-
|
245 |
-
return {"latents": denoised_latents}
|
246 |
-
|
247 |
-
|
248 |
-
def validation(
|
249 |
-
pipeline: HunyuanVideoPipeline,
|
250 |
-
prompt: str,
|
251 |
-
image: Optional[Image.Image] = None,
|
252 |
-
video: Optional[List[Image.Image]] = None,
|
253 |
-
height: Optional[int] = None,
|
254 |
-
width: Optional[int] = None,
|
255 |
-
num_frames: Optional[int] = None,
|
256 |
-
num_videos_per_prompt: int = 1,
|
257 |
-
generator: Optional[torch.Generator] = None,
|
258 |
-
**kwargs,
|
259 |
-
):
|
260 |
-
generation_kwargs = {
|
261 |
-
"prompt": prompt,
|
262 |
-
"height": height,
|
263 |
-
"width": width,
|
264 |
-
"num_frames": num_frames,
|
265 |
-
"num_inference_steps": 30,
|
266 |
-
"num_videos_per_prompt": num_videos_per_prompt,
|
267 |
-
"generator": generator,
|
268 |
-
"return_dict": True,
|
269 |
-
"output_type": "pil",
|
270 |
-
}
|
271 |
-
generation_kwargs = {k: v for k, v in generation_kwargs.items() if v is not None}
|
272 |
-
output = pipeline(**generation_kwargs).frames[0]
|
273 |
-
return [("video", output)]
|
274 |
-
|
275 |
-
|
276 |
-
def _get_llama_prompt_embeds(
|
277 |
-
tokenizer: LlamaTokenizer,
|
278 |
-
text_encoder: LlamaModel,
|
279 |
-
prompt: List[str],
|
280 |
-
prompt_template: Dict[str, Any],
|
281 |
-
device: torch.device,
|
282 |
-
dtype: torch.dtype,
|
283 |
-
max_sequence_length: int = 256,
|
284 |
-
num_hidden_layers_to_skip: int = 2,
|
285 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
286 |
-
batch_size = len(prompt)
|
287 |
-
prompt = [prompt_template["template"].format(p) for p in prompt]
|
288 |
-
|
289 |
-
crop_start = prompt_template.get("crop_start", None)
|
290 |
-
if crop_start is None:
|
291 |
-
prompt_template_input = tokenizer(
|
292 |
-
prompt_template["template"],
|
293 |
-
padding="max_length",
|
294 |
-
return_tensors="pt",
|
295 |
-
return_length=False,
|
296 |
-
return_overflowing_tokens=False,
|
297 |
-
return_attention_mask=False,
|
298 |
-
)
|
299 |
-
crop_start = prompt_template_input["input_ids"].shape[-1]
|
300 |
-
# Remove <|eot_id|> token and placeholder {}
|
301 |
-
crop_start -= 2
|
302 |
-
|
303 |
-
max_sequence_length += crop_start
|
304 |
-
text_inputs = tokenizer(
|
305 |
-
prompt,
|
306 |
-
max_length=max_sequence_length,
|
307 |
-
padding="max_length",
|
308 |
-
truncation=True,
|
309 |
-
return_tensors="pt",
|
310 |
-
return_length=False,
|
311 |
-
return_overflowing_tokens=False,
|
312 |
-
return_attention_mask=True,
|
313 |
-
)
|
314 |
-
text_input_ids = text_inputs.input_ids.to(device=device)
|
315 |
-
prompt_attention_mask = text_inputs.attention_mask.to(device=device)
|
316 |
-
|
317 |
-
prompt_embeds = text_encoder(
|
318 |
-
input_ids=text_input_ids,
|
319 |
-
attention_mask=prompt_attention_mask,
|
320 |
-
output_hidden_states=True,
|
321 |
-
).hidden_states[-(num_hidden_layers_to_skip + 1)]
|
322 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype)
|
323 |
-
|
324 |
-
if crop_start is not None and crop_start > 0:
|
325 |
-
prompt_embeds = prompt_embeds[:, crop_start:]
|
326 |
-
prompt_attention_mask = prompt_attention_mask[:, crop_start:]
|
327 |
-
|
328 |
-
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
|
329 |
-
|
330 |
-
return {"prompt_embeds": prompt_embeds, "prompt_attention_mask": prompt_attention_mask}
|
331 |
-
|
332 |
-
|
333 |
-
def _get_clip_prompt_embeds(
|
334 |
-
tokenizer_2: CLIPTokenizer,
|
335 |
-
text_encoder_2: CLIPTextModel,
|
336 |
-
prompt: Union[str, List[str]],
|
337 |
-
device: torch.device,
|
338 |
-
dtype: torch.dtype,
|
339 |
-
max_sequence_length: int = 77,
|
340 |
-
) -> torch.Tensor:
|
341 |
-
text_inputs = tokenizer_2(
|
342 |
-
prompt,
|
343 |
-
padding="max_length",
|
344 |
-
max_length=max_sequence_length,
|
345 |
-
truncation=True,
|
346 |
-
return_tensors="pt",
|
347 |
-
)
|
348 |
-
|
349 |
-
prompt_embeds = text_encoder_2(text_inputs.input_ids.to(device), output_hidden_states=False).pooler_output
|
350 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype)
|
351 |
-
|
352 |
-
return {"pooled_prompt_embeds": prompt_embeds}
|
353 |
-
|
354 |
-
|
355 |
-
# TODO(aryan): refactor into model specs for better re-use
|
356 |
-
HUNYUAN_VIDEO_T2V_LORA_CONFIG = {
|
357 |
-
"pipeline_cls": HunyuanVideoPipeline,
|
358 |
-
"load_condition_models": load_condition_models,
|
359 |
-
"load_latent_models": load_latent_models,
|
360 |
-
"load_diffusion_models": load_diffusion_models,
|
361 |
-
"initialize_pipeline": initialize_pipeline,
|
362 |
-
"prepare_conditions": prepare_conditions,
|
363 |
-
"prepare_latents": prepare_latents,
|
364 |
-
"post_latent_preparation": post_latent_preparation,
|
365 |
-
"collate_fn": collate_fn_t2v,
|
366 |
-
"forward_pass": forward_pass,
|
367 |
-
"validation": validation,
|
368 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/ltx_video/__init__.py
CHANGED
@@ -1,2 +1 @@
|
|
1 |
-
from .
|
2 |
-
from .lora import LTX_VIDEO_T2V_LORA_CONFIG
|
|
|
1 |
+
from .base_specification import LTXVideoModelSpecification
|
|
finetrainers/models/ltx_video/base_specification.py
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from accelerate import init_empty_weights
|
7 |
+
from diffusers import (
|
8 |
+
AutoencoderKLLTXVideo,
|
9 |
+
FlowMatchEulerDiscreteScheduler,
|
10 |
+
LTXImageToVideoPipeline,
|
11 |
+
LTXPipeline,
|
12 |
+
LTXVideoTransformer3DModel,
|
13 |
+
)
|
14 |
+
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
|
15 |
+
from PIL.Image import Image
|
16 |
+
from transformers import AutoModel, AutoTokenizer, T5EncoderModel, T5Tokenizer
|
17 |
+
|
18 |
+
from ... import data
|
19 |
+
from ... import functional as FF
|
20 |
+
from ...logging import get_logger
|
21 |
+
from ...parallel import ParallelBackendEnum
|
22 |
+
from ...processors import ProcessorMixin, T5Processor
|
23 |
+
from ...typing import ArtifactType, SchedulerType
|
24 |
+
from ...utils import get_non_null_items
|
25 |
+
from ..modeling_utils import ModelSpecification
|
26 |
+
|
27 |
+
|
28 |
+
logger = get_logger()
|
29 |
+
|
30 |
+
|
31 |
+
class LTXLatentEncodeProcessor(ProcessorMixin):
|
32 |
+
r"""
|
33 |
+
Processor to encode image/video into latents using the LTX VAE.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
output_names (`List[str]`):
|
37 |
+
The names of the outputs that the processor returns. The outputs are in the following order:
|
38 |
+
- latents: The latents of the input image/video.
|
39 |
+
- num_frames: The number of frames in the input video.
|
40 |
+
- height: The height of the input image/video.
|
41 |
+
- width: The width of the input image/video.
|
42 |
+
- latents_mean: The latent channel means from the VAE state dict.
|
43 |
+
- latents_std: The latent channel standard deviations from the VAE state dict.
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(self, output_names: List[str]):
|
47 |
+
super().__init__()
|
48 |
+
self.output_names = output_names
|
49 |
+
assert len(self.output_names) == 6
|
50 |
+
|
51 |
+
def forward(
|
52 |
+
self,
|
53 |
+
vae: AutoencoderKLLTXVideo,
|
54 |
+
image: Optional[torch.Tensor] = None,
|
55 |
+
video: Optional[torch.Tensor] = None,
|
56 |
+
generator: Optional[torch.Generator] = None,
|
57 |
+
compute_posterior: bool = True,
|
58 |
+
) -> Dict[str, torch.Tensor]:
|
59 |
+
device = vae.device
|
60 |
+
dtype = vae.dtype
|
61 |
+
|
62 |
+
if image is not None:
|
63 |
+
video = image.unsqueeze(1)
|
64 |
+
|
65 |
+
assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
|
66 |
+
video = video.to(device=device, dtype=vae.dtype)
|
67 |
+
video = video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
|
68 |
+
|
69 |
+
if compute_posterior:
|
70 |
+
latents = vae.encode(video).latent_dist.sample(generator=generator)
|
71 |
+
latents = latents.to(dtype=dtype)
|
72 |
+
else:
|
73 |
+
if vae.use_slicing and video.shape[0] > 1:
|
74 |
+
encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
|
75 |
+
moments = torch.cat(encoded_slices)
|
76 |
+
else:
|
77 |
+
moments = vae._encode(video)
|
78 |
+
latents = moments.to(dtype=dtype)
|
79 |
+
|
80 |
+
_, _, num_frames, height, width = latents.shape
|
81 |
+
|
82 |
+
return {
|
83 |
+
self.output_names[0]: latents,
|
84 |
+
self.output_names[1]: num_frames,
|
85 |
+
self.output_names[2]: height,
|
86 |
+
self.output_names[3]: width,
|
87 |
+
self.output_names[4]: vae.latents_mean,
|
88 |
+
self.output_names[5]: vae.latents_std,
|
89 |
+
}
|
90 |
+
|
91 |
+
|
92 |
+
class LTXVideoModelSpecification(ModelSpecification):
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
pretrained_model_name_or_path: str = "Lightricks/LTX-Video",
|
96 |
+
tokenizer_id: Optional[str] = None,
|
97 |
+
text_encoder_id: Optional[str] = None,
|
98 |
+
transformer_id: Optional[str] = None,
|
99 |
+
vae_id: Optional[str] = None,
|
100 |
+
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
101 |
+
transformer_dtype: torch.dtype = torch.bfloat16,
|
102 |
+
vae_dtype: torch.dtype = torch.bfloat16,
|
103 |
+
revision: Optional[str] = None,
|
104 |
+
cache_dir: Optional[str] = None,
|
105 |
+
condition_model_processors: List[ProcessorMixin] = None,
|
106 |
+
latent_model_processors: List[ProcessorMixin] = None,
|
107 |
+
**kwargs,
|
108 |
+
) -> None:
|
109 |
+
super().__init__(
|
110 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
111 |
+
tokenizer_id=tokenizer_id,
|
112 |
+
text_encoder_id=text_encoder_id,
|
113 |
+
transformer_id=transformer_id,
|
114 |
+
vae_id=vae_id,
|
115 |
+
text_encoder_dtype=text_encoder_dtype,
|
116 |
+
transformer_dtype=transformer_dtype,
|
117 |
+
vae_dtype=vae_dtype,
|
118 |
+
revision=revision,
|
119 |
+
cache_dir=cache_dir,
|
120 |
+
)
|
121 |
+
|
122 |
+
if condition_model_processors is None:
|
123 |
+
condition_model_processors = [T5Processor(["prompt_embeds", "prompt_attention_mask"])]
|
124 |
+
if latent_model_processors is None:
|
125 |
+
latent_model_processors = [
|
126 |
+
LTXLatentEncodeProcessor(["latents", "num_frames", "height", "width", "latents_mean", "latents_std"])
|
127 |
+
]
|
128 |
+
|
129 |
+
self.condition_model_processors = condition_model_processors
|
130 |
+
self.latent_model_processors = latent_model_processors
|
131 |
+
|
132 |
+
@property
|
133 |
+
def _resolution_dim_keys(self):
|
134 |
+
return {
|
135 |
+
"latents": (2, 3, 4),
|
136 |
+
}
|
137 |
+
|
138 |
+
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
|
139 |
+
if self.tokenizer_id is not None:
|
140 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
141 |
+
self.tokenizer_id, revision=self.revision, cache_dir=self.cache_dir
|
142 |
+
)
|
143 |
+
else:
|
144 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
145 |
+
self.pretrained_model_name_or_path,
|
146 |
+
subfolder="tokenizer",
|
147 |
+
revision=self.revision,
|
148 |
+
cache_dir=self.cache_dir,
|
149 |
+
)
|
150 |
+
|
151 |
+
if self.text_encoder_id is not None:
|
152 |
+
text_encoder = AutoModel.from_pretrained(
|
153 |
+
self.text_encoder_id,
|
154 |
+
torch_dtype=self.text_encoder_dtype,
|
155 |
+
revision=self.revision,
|
156 |
+
cache_dir=self.cache_dir,
|
157 |
+
)
|
158 |
+
else:
|
159 |
+
text_encoder = T5EncoderModel.from_pretrained(
|
160 |
+
self.pretrained_model_name_or_path,
|
161 |
+
subfolder="text_encoder",
|
162 |
+
torch_dtype=self.text_encoder_dtype,
|
163 |
+
revision=self.revision,
|
164 |
+
cache_dir=self.cache_dir,
|
165 |
+
)
|
166 |
+
|
167 |
+
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
|
168 |
+
|
169 |
+
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
|
170 |
+
if self.vae_id is not None:
|
171 |
+
vae = AutoencoderKLLTXVideo.from_pretrained(
|
172 |
+
self.vae_id,
|
173 |
+
torch_dtype=self.vae_dtype,
|
174 |
+
revision=self.revision,
|
175 |
+
cache_dir=self.cache_dir,
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
vae = AutoencoderKLLTXVideo.from_pretrained(
|
179 |
+
self.pretrained_model_name_or_path,
|
180 |
+
subfolder="vae",
|
181 |
+
torch_dtype=self.vae_dtype,
|
182 |
+
revision=self.revision,
|
183 |
+
cache_dir=self.cache_dir,
|
184 |
+
)
|
185 |
+
|
186 |
+
return {"vae": vae}
|
187 |
+
|
188 |
+
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
|
189 |
+
if self.transformer_id is not None:
|
190 |
+
transformer = LTXVideoTransformer3DModel.from_pretrained(
|
191 |
+
self.transformer_id,
|
192 |
+
torch_dtype=self.transformer_dtype,
|
193 |
+
revision=self.revision,
|
194 |
+
cache_dir=self.cache_dir,
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
transformer = LTXVideoTransformer3DModel.from_pretrained(
|
198 |
+
self.pretrained_model_name_or_path,
|
199 |
+
subfolder="transformer",
|
200 |
+
torch_dtype=self.transformer_dtype,
|
201 |
+
revision=self.revision,
|
202 |
+
cache_dir=self.cache_dir,
|
203 |
+
)
|
204 |
+
|
205 |
+
scheduler = FlowMatchEulerDiscreteScheduler()
|
206 |
+
|
207 |
+
return {"transformer": transformer, "scheduler": scheduler}
|
208 |
+
|
209 |
+
def load_pipeline(
|
210 |
+
self,
|
211 |
+
tokenizer: Optional[T5Tokenizer] = None,
|
212 |
+
text_encoder: Optional[T5EncoderModel] = None,
|
213 |
+
transformer: Optional[LTXVideoTransformer3DModel] = None,
|
214 |
+
vae: Optional[AutoencoderKLLTXVideo] = None,
|
215 |
+
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
|
216 |
+
enable_slicing: bool = False,
|
217 |
+
enable_tiling: bool = False,
|
218 |
+
enable_model_cpu_offload: bool = False,
|
219 |
+
training: bool = False,
|
220 |
+
**kwargs,
|
221 |
+
) -> LTXPipeline:
|
222 |
+
components = {
|
223 |
+
"tokenizer": tokenizer,
|
224 |
+
"text_encoder": text_encoder,
|
225 |
+
"transformer": transformer,
|
226 |
+
"vae": vae,
|
227 |
+
"scheduler": scheduler,
|
228 |
+
}
|
229 |
+
components = get_non_null_items(components)
|
230 |
+
|
231 |
+
pipe = LTXPipeline.from_pretrained(
|
232 |
+
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
|
233 |
+
)
|
234 |
+
pipe.text_encoder.to(self.text_encoder_dtype)
|
235 |
+
pipe.vae.to(self.vae_dtype)
|
236 |
+
|
237 |
+
if not training:
|
238 |
+
pipe.transformer.to(self.transformer_dtype)
|
239 |
+
|
240 |
+
if enable_slicing:
|
241 |
+
pipe.vae.enable_slicing()
|
242 |
+
if enable_tiling:
|
243 |
+
pipe.vae.enable_tiling()
|
244 |
+
if enable_model_cpu_offload:
|
245 |
+
pipe.enable_model_cpu_offload()
|
246 |
+
|
247 |
+
return pipe
|
248 |
+
|
249 |
+
@torch.no_grad()
|
250 |
+
def prepare_conditions(
|
251 |
+
self,
|
252 |
+
tokenizer: T5Tokenizer,
|
253 |
+
text_encoder: T5EncoderModel,
|
254 |
+
caption: str,
|
255 |
+
max_sequence_length: int = 128,
|
256 |
+
**kwargs,
|
257 |
+
) -> Dict[str, Any]:
|
258 |
+
conditions = {
|
259 |
+
"tokenizer": tokenizer,
|
260 |
+
"text_encoder": text_encoder,
|
261 |
+
"caption": caption,
|
262 |
+
"max_sequence_length": max_sequence_length,
|
263 |
+
**kwargs,
|
264 |
+
}
|
265 |
+
input_keys = set(conditions.keys())
|
266 |
+
conditions = super().prepare_conditions(**conditions)
|
267 |
+
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
268 |
+
return conditions
|
269 |
+
|
270 |
+
@torch.no_grad()
|
271 |
+
def prepare_latents(
|
272 |
+
self,
|
273 |
+
vae: AutoencoderKLLTXVideo,
|
274 |
+
image: Optional[torch.Tensor] = None,
|
275 |
+
video: Optional[torch.Tensor] = None,
|
276 |
+
generator: Optional[torch.Generator] = None,
|
277 |
+
compute_posterior: bool = True,
|
278 |
+
**kwargs,
|
279 |
+
) -> Dict[str, torch.Tensor]:
|
280 |
+
conditions = {
|
281 |
+
"vae": vae,
|
282 |
+
"image": image,
|
283 |
+
"video": video,
|
284 |
+
"generator": generator,
|
285 |
+
"compute_posterior": compute_posterior,
|
286 |
+
**kwargs,
|
287 |
+
}
|
288 |
+
input_keys = set(conditions.keys())
|
289 |
+
conditions = super().prepare_latents(**conditions)
|
290 |
+
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
291 |
+
return conditions
|
292 |
+
|
293 |
+
def forward(
|
294 |
+
self,
|
295 |
+
transformer: LTXVideoTransformer3DModel,
|
296 |
+
condition_model_conditions: Dict[str, torch.Tensor],
|
297 |
+
latent_model_conditions: Dict[str, torch.Tensor],
|
298 |
+
sigmas: torch.Tensor,
|
299 |
+
generator: Optional[torch.Generator] = None,
|
300 |
+
compute_posterior: bool = True,
|
301 |
+
**kwargs,
|
302 |
+
) -> Tuple[torch.Tensor, ...]:
|
303 |
+
# TODO(aryan): make this configurable? Should it be?
|
304 |
+
first_frame_conditioning_p = 0.1
|
305 |
+
min_first_frame_sigma = 0.25
|
306 |
+
|
307 |
+
if compute_posterior:
|
308 |
+
latents = latent_model_conditions.pop("latents")
|
309 |
+
else:
|
310 |
+
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
|
311 |
+
latents = posterior.sample(generator=generator)
|
312 |
+
del posterior
|
313 |
+
|
314 |
+
latents_mean = latent_model_conditions.pop("latents_mean")
|
315 |
+
latents_std = latent_model_conditions.pop("latents_std")
|
316 |
+
|
317 |
+
latents = self._normalize_latents(latents, latents_mean, latents_std)
|
318 |
+
noise = torch.zeros_like(latents).normal_(generator=generator)
|
319 |
+
|
320 |
+
if random.random() < first_frame_conditioning_p:
|
321 |
+
# Based on Section 2.4 of the paper, it mentions that the first frame timesteps should be a small random value.
|
322 |
+
# Making as estimated guess, we limit the sigmas to be at least 0.2.
|
323 |
+
# torch.rand_like returns values in [0, 1). We want to make sure that the first frame sigma is <= actual sigmas
|
324 |
+
# for image conditioning. In order to do this, we rescale by multiplying with sigmas so the range is [0, sigmas).
|
325 |
+
first_frame_sigma = torch.rand_like(sigmas) * sigmas
|
326 |
+
first_frame_sigma = torch.min(first_frame_sigma, sigmas.new_full(sigmas.shape, min_first_frame_sigma))
|
327 |
+
|
328 |
+
latents_first_frame, latents_rest = latents[:, :, :1], latents[:, :, 1:]
|
329 |
+
noisy_latents_first_frame = FF.flow_match_xt(latents_first_frame, noise[:, :, :1], first_frame_sigma)
|
330 |
+
noisy_latents_remaining = FF.flow_match_xt(latents_rest, noise[:, :, 1:], sigmas)
|
331 |
+
noisy_latents = torch.cat([noisy_latents_first_frame, noisy_latents_remaining], dim=2)
|
332 |
+
else:
|
333 |
+
noisy_latents = FF.flow_match_xt(latents, noise, sigmas)
|
334 |
+
|
335 |
+
patch_size = self.transformer_config.patch_size
|
336 |
+
patch_size_t = self.transformer_config.patch_size_t
|
337 |
+
|
338 |
+
latents = self._pack_latents(latents, patch_size, patch_size_t)
|
339 |
+
noise = self._pack_latents(noise, patch_size, patch_size_t)
|
340 |
+
noisy_latents = self._pack_latents(noisy_latents, patch_size, patch_size_t)
|
341 |
+
|
342 |
+
sigmas = sigmas.view(-1, 1, 1).expand(-1, *noisy_latents.shape[1:-1], -1)
|
343 |
+
|
344 |
+
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
|
345 |
+
condition_model_conditions["encoder_hidden_states"] = condition_model_conditions.pop("prompt_embeds")
|
346 |
+
condition_model_conditions["encoder_attention_mask"] = condition_model_conditions.pop("prompt_attention_mask")
|
347 |
+
|
348 |
+
# TODO(aryan): make this configurable
|
349 |
+
frame_rate = 25
|
350 |
+
temporal_compression_ratio = 8
|
351 |
+
vae_spatial_compression_ratio = 32
|
352 |
+
latent_frame_rate = frame_rate / temporal_compression_ratio
|
353 |
+
|
354 |
+
rope_interpolation_scale = [
|
355 |
+
1 / latent_frame_rate,
|
356 |
+
vae_spatial_compression_ratio,
|
357 |
+
vae_spatial_compression_ratio,
|
358 |
+
]
|
359 |
+
timesteps = (sigmas * 1000.0).long()
|
360 |
+
|
361 |
+
pred = transformer(
|
362 |
+
**latent_model_conditions,
|
363 |
+
**condition_model_conditions,
|
364 |
+
timestep=timesteps,
|
365 |
+
rope_interpolation_scale=rope_interpolation_scale,
|
366 |
+
return_dict=False,
|
367 |
+
)[0]
|
368 |
+
target = FF.flow_match_target(noise, latents)
|
369 |
+
|
370 |
+
return pred, target, sigmas
|
371 |
+
|
372 |
+
def validation(
|
373 |
+
self,
|
374 |
+
pipeline: LTXPipeline,
|
375 |
+
prompt: str,
|
376 |
+
image: Optional[Image] = None,
|
377 |
+
height: Optional[int] = None,
|
378 |
+
width: Optional[int] = None,
|
379 |
+
num_frames: Optional[int] = None,
|
380 |
+
frame_rate: int = 25,
|
381 |
+
num_inference_steps: int = 50,
|
382 |
+
generator: Optional[torch.Generator] = None,
|
383 |
+
**kwargs,
|
384 |
+
) -> List[ArtifactType]:
|
385 |
+
if image is not None:
|
386 |
+
pipeline = LTXImageToVideoPipeline.from_pipe(pipeline)
|
387 |
+
|
388 |
+
generation_kwargs = {
|
389 |
+
"prompt": prompt,
|
390 |
+
"image": image,
|
391 |
+
"height": height,
|
392 |
+
"width": width,
|
393 |
+
"num_frames": num_frames,
|
394 |
+
"frame_rate": frame_rate,
|
395 |
+
"num_inference_steps": num_inference_steps,
|
396 |
+
"generator": generator,
|
397 |
+
"return_dict": True,
|
398 |
+
"output_type": "pil",
|
399 |
+
}
|
400 |
+
generation_kwargs = get_non_null_items(generation_kwargs)
|
401 |
+
video = pipeline(**generation_kwargs).frames[0]
|
402 |
+
return [data.VideoArtifact(value=video)]
|
403 |
+
|
404 |
+
def _save_lora_weights(
|
405 |
+
self,
|
406 |
+
directory: str,
|
407 |
+
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
408 |
+
scheduler: Optional[SchedulerType] = None,
|
409 |
+
*args,
|
410 |
+
**kwargs,
|
411 |
+
) -> None:
|
412 |
+
# TODO(aryan): this needs refactoring
|
413 |
+
if transformer_state_dict is not None:
|
414 |
+
LTXPipeline.save_lora_weights(directory, transformer_state_dict, safe_serialization=True)
|
415 |
+
if scheduler is not None:
|
416 |
+
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
417 |
+
|
418 |
+
def _save_model(
|
419 |
+
self,
|
420 |
+
directory: str,
|
421 |
+
transformer: LTXVideoTransformer3DModel,
|
422 |
+
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
423 |
+
scheduler: Optional[SchedulerType] = None,
|
424 |
+
) -> None:
|
425 |
+
# TODO(aryan): this needs refactoring
|
426 |
+
if transformer_state_dict is not None:
|
427 |
+
with init_empty_weights():
|
428 |
+
transformer_copy = LTXVideoTransformer3DModel.from_config(transformer.config)
|
429 |
+
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
|
430 |
+
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
|
431 |
+
if scheduler is not None:
|
432 |
+
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
433 |
+
|
434 |
+
def apply_tensor_parallel(
|
435 |
+
self,
|
436 |
+
backend: ParallelBackendEnum,
|
437 |
+
device_mesh: torch.distributed.DeviceMesh,
|
438 |
+
transformer: LTXVideoTransformer3DModel,
|
439 |
+
**kwargs,
|
440 |
+
) -> None:
|
441 |
+
if backend == ParallelBackendEnum.PTD:
|
442 |
+
_apply_tensor_parallel_ptd(device_mesh, transformer)
|
443 |
+
else:
|
444 |
+
raise NotImplementedError(f"Parallel backend {backend} is not supported for LTXVideoModelSpecification")
|
445 |
+
|
446 |
+
@staticmethod
|
447 |
+
def _normalize_latents(
|
448 |
+
latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
|
449 |
+
) -> torch.Tensor:
|
450 |
+
# Normalize latents across the channel dimension [B, C, F, H, W]
|
451 |
+
latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
|
452 |
+
latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
|
453 |
+
latents = (latents - latents_mean) * scaling_factor / latents_std
|
454 |
+
return latents
|
455 |
+
|
456 |
+
@staticmethod
|
457 |
+
def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
|
458 |
+
# Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
|
459 |
+
# The patch dimensions are then permuted and collapsed into the channel dimension of shape:
|
460 |
+
# [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
|
461 |
+
# dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
|
462 |
+
batch_size, num_channels, num_frames, height, width = latents.shape
|
463 |
+
post_patch_num_frames = num_frames // patch_size_t
|
464 |
+
post_patch_height = height // patch_size
|
465 |
+
post_patch_width = width // patch_size
|
466 |
+
latents = latents.reshape(
|
467 |
+
batch_size,
|
468 |
+
-1,
|
469 |
+
post_patch_num_frames,
|
470 |
+
patch_size_t,
|
471 |
+
post_patch_height,
|
472 |
+
patch_size,
|
473 |
+
post_patch_width,
|
474 |
+
patch_size,
|
475 |
+
)
|
476 |
+
latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
|
477 |
+
return latents
|
478 |
+
|
479 |
+
|
480 |
+
def _apply_tensor_parallel_ptd(
|
481 |
+
device_mesh: torch.distributed.device_mesh.DeviceMesh, transformer: LTXVideoTransformer3DModel
|
482 |
+
) -> None:
|
483 |
+
from torch.distributed.tensor.parallel import parallelize_module
|
484 |
+
from torch.distributed.tensor.parallel.style import ColwiseParallel, RowwiseParallel
|
485 |
+
|
486 |
+
transformer_plan = {
|
487 |
+
# ===== Condition embeddings =====
|
488 |
+
# "time_embed.emb.timestep_embedder.linear_1": ColwiseParallel(),
|
489 |
+
# "time_embed.emb.timestep_embedder.linear_2": RowwiseParallel(output_layouts=Shard(-1)),
|
490 |
+
# "time_embed.linear": ColwiseParallel(input_layouts=Shard(-1), output_layouts=Replicate()),
|
491 |
+
# "time_embed": PrepareModuleOutput(output_layouts=(Replicate(), Shard(-1)), desired_output_layouts=(Replicate(), Replicate())),
|
492 |
+
# "caption_projection.linear_1": ColwiseParallel(),
|
493 |
+
# "caption_projection.linear_2": RowwiseParallel(),
|
494 |
+
# "rope": PrepareModuleOutput(output_layouts=(Replicate(), Replicate()), desired_output_layouts=(Shard(1), Shard(1)), use_local_output=False),
|
495 |
+
# ===== =====
|
496 |
+
}
|
497 |
+
|
498 |
+
for block in transformer.transformer_blocks:
|
499 |
+
block_plan = {}
|
500 |
+
|
501 |
+
# ===== Attention =====
|
502 |
+
# 8 all-to-all, 3 all-reduce
|
503 |
+
# block_plan["attn1.to_q"] = ColwiseParallel(use_local_output=False)
|
504 |
+
# block_plan["attn1.to_k"] = ColwiseParallel(use_local_output=False)
|
505 |
+
# block_plan["attn1.to_v"] = ColwiseParallel(use_local_output=False)
|
506 |
+
# block_plan["attn1.norm_q"] = SequenceParallel()
|
507 |
+
# block_plan["attn1.norm_k"] = SequenceParallel()
|
508 |
+
# block_plan["attn1.to_out.0"] = RowwiseParallel(input_layouts=Shard(1))
|
509 |
+
# block_plan["attn2.to_q"] = ColwiseParallel(use_local_output=False)
|
510 |
+
# block_plan["attn2.to_k"] = ColwiseParallel(use_local_output=False)
|
511 |
+
# block_plan["attn2.to_v"] = ColwiseParallel(use_local_output=False)
|
512 |
+
# block_plan["attn2.norm_q"] = SequenceParallel()
|
513 |
+
# block_plan["attn2.norm_k"] = SequenceParallel()
|
514 |
+
# block_plan["attn2.to_out.0"] = RowwiseParallel(input_layouts=Shard(1))
|
515 |
+
# ===== =====
|
516 |
+
|
517 |
+
block_plan["ff.net.0.proj"] = ColwiseParallel()
|
518 |
+
block_plan["ff.net.2"] = RowwiseParallel()
|
519 |
+
|
520 |
+
parallelize_module(block, device_mesh, block_plan)
|
521 |
+
|
522 |
+
parallelize_module(transformer, device_mesh, transformer_plan)
|
finetrainers/models/ltx_video/full_finetune.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
from diffusers import LTXPipeline
|
2 |
-
|
3 |
-
from .lora import (
|
4 |
-
collate_fn_t2v,
|
5 |
-
forward_pass,
|
6 |
-
initialize_pipeline,
|
7 |
-
load_condition_models,
|
8 |
-
load_diffusion_models,
|
9 |
-
load_latent_models,
|
10 |
-
post_latent_preparation,
|
11 |
-
prepare_conditions,
|
12 |
-
prepare_latents,
|
13 |
-
validation,
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
# TODO(aryan): refactor into model specs for better re-use
|
18 |
-
LTX_VIDEO_T2V_FULL_FINETUNE_CONFIG = {
|
19 |
-
"pipeline_cls": LTXPipeline,
|
20 |
-
"load_condition_models": load_condition_models,
|
21 |
-
"load_latent_models": load_latent_models,
|
22 |
-
"load_diffusion_models": load_diffusion_models,
|
23 |
-
"initialize_pipeline": initialize_pipeline,
|
24 |
-
"prepare_conditions": prepare_conditions,
|
25 |
-
"prepare_latents": prepare_latents,
|
26 |
-
"post_latent_preparation": post_latent_preparation,
|
27 |
-
"collate_fn": collate_fn_t2v,
|
28 |
-
"forward_pass": forward_pass,
|
29 |
-
"validation": validation,
|
30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/ltx_video/lora.py
DELETED
@@ -1,331 +0,0 @@
|
|
1 |
-
from typing import Dict, List, Optional, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
from accelerate.logging import get_logger
|
6 |
-
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel
|
7 |
-
from PIL import Image
|
8 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
9 |
-
|
10 |
-
|
11 |
-
logger = get_logger("finetrainers") # pylint: disable=invalid-name
|
12 |
-
|
13 |
-
|
14 |
-
def load_condition_models(
|
15 |
-
model_id: str = "Lightricks/LTX-Video",
|
16 |
-
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
17 |
-
revision: Optional[str] = None,
|
18 |
-
cache_dir: Optional[str] = None,
|
19 |
-
**kwargs,
|
20 |
-
) -> Dict[str, nn.Module]:
|
21 |
-
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, cache_dir=cache_dir)
|
22 |
-
text_encoder = T5EncoderModel.from_pretrained(
|
23 |
-
model_id, subfolder="text_encoder", torch_dtype=text_encoder_dtype, revision=revision, cache_dir=cache_dir
|
24 |
-
)
|
25 |
-
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
|
26 |
-
|
27 |
-
|
28 |
-
def load_latent_models(
|
29 |
-
model_id: str = "Lightricks/LTX-Video",
|
30 |
-
vae_dtype: torch.dtype = torch.bfloat16,
|
31 |
-
revision: Optional[str] = None,
|
32 |
-
cache_dir: Optional[str] = None,
|
33 |
-
**kwargs,
|
34 |
-
) -> Dict[str, nn.Module]:
|
35 |
-
vae = AutoencoderKLLTXVideo.from_pretrained(
|
36 |
-
model_id, subfolder="vae", torch_dtype=vae_dtype, revision=revision, cache_dir=cache_dir
|
37 |
-
)
|
38 |
-
return {"vae": vae}
|
39 |
-
|
40 |
-
|
41 |
-
def load_diffusion_models(
|
42 |
-
model_id: str = "Lightricks/LTX-Video",
|
43 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
44 |
-
revision: Optional[str] = None,
|
45 |
-
cache_dir: Optional[str] = None,
|
46 |
-
**kwargs,
|
47 |
-
) -> Dict[str, nn.Module]:
|
48 |
-
transformer = LTXVideoTransformer3DModel.from_pretrained(
|
49 |
-
model_id, subfolder="transformer", torch_dtype=transformer_dtype, revision=revision, cache_dir=cache_dir
|
50 |
-
)
|
51 |
-
scheduler = FlowMatchEulerDiscreteScheduler()
|
52 |
-
return {"transformer": transformer, "scheduler": scheduler}
|
53 |
-
|
54 |
-
|
55 |
-
def initialize_pipeline(
|
56 |
-
model_id: str = "Lightricks/LTX-Video",
|
57 |
-
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
58 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
59 |
-
vae_dtype: torch.dtype = torch.bfloat16,
|
60 |
-
tokenizer: Optional[T5Tokenizer] = None,
|
61 |
-
text_encoder: Optional[T5EncoderModel] = None,
|
62 |
-
transformer: Optional[LTXVideoTransformer3DModel] = None,
|
63 |
-
vae: Optional[AutoencoderKLLTXVideo] = None,
|
64 |
-
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
|
65 |
-
device: Optional[torch.device] = None,
|
66 |
-
revision: Optional[str] = None,
|
67 |
-
cache_dir: Optional[str] = None,
|
68 |
-
enable_slicing: bool = False,
|
69 |
-
enable_tiling: bool = False,
|
70 |
-
enable_model_cpu_offload: bool = False,
|
71 |
-
is_training: bool = False,
|
72 |
-
**kwargs,
|
73 |
-
) -> LTXPipeline:
|
74 |
-
component_name_pairs = [
|
75 |
-
("tokenizer", tokenizer),
|
76 |
-
("text_encoder", text_encoder),
|
77 |
-
("transformer", transformer),
|
78 |
-
("vae", vae),
|
79 |
-
("scheduler", scheduler),
|
80 |
-
]
|
81 |
-
components = {}
|
82 |
-
for name, component in component_name_pairs:
|
83 |
-
if component is not None:
|
84 |
-
components[name] = component
|
85 |
-
|
86 |
-
pipe = LTXPipeline.from_pretrained(model_id, **components, revision=revision, cache_dir=cache_dir)
|
87 |
-
pipe.text_encoder = pipe.text_encoder.to(dtype=text_encoder_dtype)
|
88 |
-
pipe.vae = pipe.vae.to(dtype=vae_dtype)
|
89 |
-
# The transformer should already be in the correct dtype when training, so we don't need to cast it here.
|
90 |
-
# If we cast, whilst using fp8 layerwise upcasting hooks, it will lead to an error in the training during
|
91 |
-
# DDP optimizer step.
|
92 |
-
if not is_training:
|
93 |
-
pipe.transformer = pipe.transformer.to(dtype=transformer_dtype)
|
94 |
-
|
95 |
-
if enable_slicing:
|
96 |
-
pipe.vae.enable_slicing()
|
97 |
-
if enable_tiling:
|
98 |
-
pipe.vae.enable_tiling()
|
99 |
-
|
100 |
-
if enable_model_cpu_offload:
|
101 |
-
pipe.enable_model_cpu_offload(device=device)
|
102 |
-
else:
|
103 |
-
pipe.to(device=device)
|
104 |
-
|
105 |
-
return pipe
|
106 |
-
|
107 |
-
|
108 |
-
def prepare_conditions(
|
109 |
-
tokenizer: T5Tokenizer,
|
110 |
-
text_encoder: T5EncoderModel,
|
111 |
-
prompt: Union[str, List[str]],
|
112 |
-
device: Optional[torch.device] = None,
|
113 |
-
dtype: Optional[torch.dtype] = None,
|
114 |
-
max_sequence_length: int = 128,
|
115 |
-
**kwargs,
|
116 |
-
) -> torch.Tensor:
|
117 |
-
device = device or text_encoder.device
|
118 |
-
dtype = dtype or text_encoder.dtype
|
119 |
-
|
120 |
-
if isinstance(prompt, str):
|
121 |
-
prompt = [prompt]
|
122 |
-
|
123 |
-
return _encode_prompt_t5(tokenizer, text_encoder, prompt, device, dtype, max_sequence_length)
|
124 |
-
|
125 |
-
|
126 |
-
def prepare_latents(
|
127 |
-
vae: AutoencoderKLLTXVideo,
|
128 |
-
image_or_video: torch.Tensor,
|
129 |
-
patch_size: int = 1,
|
130 |
-
patch_size_t: int = 1,
|
131 |
-
device: Optional[torch.device] = None,
|
132 |
-
dtype: Optional[torch.dtype] = None,
|
133 |
-
generator: Optional[torch.Generator] = None,
|
134 |
-
precompute: bool = False,
|
135 |
-
) -> torch.Tensor:
|
136 |
-
device = device or vae.device
|
137 |
-
|
138 |
-
if image_or_video.ndim == 4:
|
139 |
-
image_or_video = image_or_video.unsqueeze(2)
|
140 |
-
assert image_or_video.ndim == 5, f"Expected 5D tensor, got {image_or_video.ndim}D tensor"
|
141 |
-
|
142 |
-
image_or_video = image_or_video.to(device=device, dtype=vae.dtype)
|
143 |
-
image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, C, F, H, W] -> [B, F, C, H, W]
|
144 |
-
if not precompute:
|
145 |
-
latents = vae.encode(image_or_video).latent_dist.sample(generator=generator)
|
146 |
-
latents = latents.to(dtype=dtype)
|
147 |
-
_, _, num_frames, height, width = latents.shape
|
148 |
-
latents = _normalize_latents(latents, vae.latents_mean, vae.latents_std)
|
149 |
-
latents = _pack_latents(latents, patch_size, patch_size_t)
|
150 |
-
return {"latents": latents, "num_frames": num_frames, "height": height, "width": width}
|
151 |
-
else:
|
152 |
-
if vae.use_slicing and image_or_video.shape[0] > 1:
|
153 |
-
encoded_slices = [vae._encode(x_slice) for x_slice in image_or_video.split(1)]
|
154 |
-
h = torch.cat(encoded_slices)
|
155 |
-
else:
|
156 |
-
h = vae._encode(image_or_video)
|
157 |
-
_, _, num_frames, height, width = h.shape
|
158 |
-
|
159 |
-
# TODO(aryan): This is very stupid that we might possibly be storing the latents_mean and latents_std in every file
|
160 |
-
# if precomputation is enabled. We should probably have a single file where re-usable properties like this are stored
|
161 |
-
# so as to reduce the disk memory requirements of the precomputed files.
|
162 |
-
return {
|
163 |
-
"latents": h,
|
164 |
-
"num_frames": num_frames,
|
165 |
-
"height": height,
|
166 |
-
"width": width,
|
167 |
-
"latents_mean": vae.latents_mean,
|
168 |
-
"latents_std": vae.latents_std,
|
169 |
-
}
|
170 |
-
|
171 |
-
|
172 |
-
def post_latent_preparation(
|
173 |
-
latents: torch.Tensor,
|
174 |
-
latents_mean: torch.Tensor,
|
175 |
-
latents_std: torch.Tensor,
|
176 |
-
num_frames: int,
|
177 |
-
height: int,
|
178 |
-
width: int,
|
179 |
-
patch_size: int = 1,
|
180 |
-
patch_size_t: int = 1,
|
181 |
-
**kwargs,
|
182 |
-
) -> torch.Tensor:
|
183 |
-
latents = _normalize_latents(latents, latents_mean, latents_std)
|
184 |
-
latents = _pack_latents(latents, patch_size, patch_size_t)
|
185 |
-
return {"latents": latents, "num_frames": num_frames, "height": height, "width": width}
|
186 |
-
|
187 |
-
|
188 |
-
def collate_fn_t2v(batch: List[List[Dict[str, torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
189 |
-
return {
|
190 |
-
"prompts": [x["prompt"] for x in batch[0]],
|
191 |
-
"videos": torch.stack([x["video"] for x in batch[0]]),
|
192 |
-
}
|
193 |
-
|
194 |
-
|
195 |
-
def forward_pass(
|
196 |
-
transformer: LTXVideoTransformer3DModel,
|
197 |
-
prompt_embeds: torch.Tensor,
|
198 |
-
prompt_attention_mask: torch.Tensor,
|
199 |
-
latents: torch.Tensor,
|
200 |
-
noisy_latents: torch.Tensor,
|
201 |
-
timesteps: torch.LongTensor,
|
202 |
-
num_frames: int,
|
203 |
-
height: int,
|
204 |
-
width: int,
|
205 |
-
**kwargs,
|
206 |
-
) -> torch.Tensor:
|
207 |
-
# TODO(aryan): make configurable
|
208 |
-
frame_rate = 25
|
209 |
-
latent_frame_rate = frame_rate / 8
|
210 |
-
spatial_compression_ratio = 32
|
211 |
-
rope_interpolation_scale = [1 / latent_frame_rate, spatial_compression_ratio, spatial_compression_ratio]
|
212 |
-
|
213 |
-
denoised_latents = transformer(
|
214 |
-
hidden_states=noisy_latents,
|
215 |
-
encoder_hidden_states=prompt_embeds,
|
216 |
-
timestep=timesteps,
|
217 |
-
encoder_attention_mask=prompt_attention_mask,
|
218 |
-
num_frames=num_frames,
|
219 |
-
height=height,
|
220 |
-
width=width,
|
221 |
-
rope_interpolation_scale=rope_interpolation_scale,
|
222 |
-
return_dict=False,
|
223 |
-
)[0]
|
224 |
-
|
225 |
-
return {"latents": denoised_latents}
|
226 |
-
|
227 |
-
|
228 |
-
def validation(
|
229 |
-
pipeline: LTXPipeline,
|
230 |
-
prompt: str,
|
231 |
-
image: Optional[Image.Image] = None,
|
232 |
-
video: Optional[List[Image.Image]] = None,
|
233 |
-
height: Optional[int] = None,
|
234 |
-
width: Optional[int] = None,
|
235 |
-
num_frames: Optional[int] = None,
|
236 |
-
frame_rate: int = 24,
|
237 |
-
num_videos_per_prompt: int = 1,
|
238 |
-
generator: Optional[torch.Generator] = None,
|
239 |
-
**kwargs,
|
240 |
-
):
|
241 |
-
generation_kwargs = {
|
242 |
-
"prompt": prompt,
|
243 |
-
"height": height,
|
244 |
-
"width": width,
|
245 |
-
"num_frames": num_frames,
|
246 |
-
"frame_rate": frame_rate,
|
247 |
-
"num_videos_per_prompt": num_videos_per_prompt,
|
248 |
-
"generator": generator,
|
249 |
-
"return_dict": True,
|
250 |
-
"output_type": "pil",
|
251 |
-
}
|
252 |
-
generation_kwargs = {k: v for k, v in generation_kwargs.items() if v is not None}
|
253 |
-
video = pipeline(**generation_kwargs).frames[0]
|
254 |
-
return [("video", video)]
|
255 |
-
|
256 |
-
|
257 |
-
def _encode_prompt_t5(
|
258 |
-
tokenizer: T5Tokenizer,
|
259 |
-
text_encoder: T5EncoderModel,
|
260 |
-
prompt: List[str],
|
261 |
-
device: torch.device,
|
262 |
-
dtype: torch.dtype,
|
263 |
-
max_sequence_length,
|
264 |
-
) -> torch.Tensor:
|
265 |
-
batch_size = len(prompt)
|
266 |
-
|
267 |
-
text_inputs = tokenizer(
|
268 |
-
prompt,
|
269 |
-
padding="max_length",
|
270 |
-
max_length=max_sequence_length,
|
271 |
-
truncation=True,
|
272 |
-
add_special_tokens=True,
|
273 |
-
return_tensors="pt",
|
274 |
-
)
|
275 |
-
text_input_ids = text_inputs.input_ids
|
276 |
-
prompt_attention_mask = text_inputs.attention_mask
|
277 |
-
prompt_attention_mask = prompt_attention_mask.bool().to(device)
|
278 |
-
|
279 |
-
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
|
280 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
281 |
-
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
|
282 |
-
|
283 |
-
return {"prompt_embeds": prompt_embeds, "prompt_attention_mask": prompt_attention_mask}
|
284 |
-
|
285 |
-
|
286 |
-
def _normalize_latents(
|
287 |
-
latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
|
288 |
-
) -> torch.Tensor:
|
289 |
-
# Normalize latents across the channel dimension [B, C, F, H, W]
|
290 |
-
latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
|
291 |
-
latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
|
292 |
-
latents = (latents - latents_mean) * scaling_factor / latents_std
|
293 |
-
return latents
|
294 |
-
|
295 |
-
|
296 |
-
def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
|
297 |
-
# Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
|
298 |
-
# The patch dimensions are then permuted and collapsed into the channel dimension of shape:
|
299 |
-
# [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
|
300 |
-
# dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
|
301 |
-
batch_size, num_channels, num_frames, height, width = latents.shape
|
302 |
-
post_patch_num_frames = num_frames // patch_size_t
|
303 |
-
post_patch_height = height // patch_size
|
304 |
-
post_patch_width = width // patch_size
|
305 |
-
latents = latents.reshape(
|
306 |
-
batch_size,
|
307 |
-
-1,
|
308 |
-
post_patch_num_frames,
|
309 |
-
patch_size_t,
|
310 |
-
post_patch_height,
|
311 |
-
patch_size,
|
312 |
-
post_patch_width,
|
313 |
-
patch_size,
|
314 |
-
)
|
315 |
-
latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
|
316 |
-
return latents
|
317 |
-
|
318 |
-
|
319 |
-
LTX_VIDEO_T2V_LORA_CONFIG = {
|
320 |
-
"pipeline_cls": LTXPipeline,
|
321 |
-
"load_condition_models": load_condition_models,
|
322 |
-
"load_latent_models": load_latent_models,
|
323 |
-
"load_diffusion_models": load_diffusion_models,
|
324 |
-
"initialize_pipeline": initialize_pipeline,
|
325 |
-
"prepare_conditions": prepare_conditions,
|
326 |
-
"prepare_latents": prepare_latents,
|
327 |
-
"post_latent_preparation": post_latent_preparation,
|
328 |
-
"collate_fn": collate_fn_t2v,
|
329 |
-
"forward_pass": forward_pass,
|
330 |
-
"validation": validation,
|
331 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/modeling_utils.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
+
from diffusers.configuration_utils import FrozenDict
|
6 |
+
from PIL.Image import Image
|
7 |
+
|
8 |
+
from ..logging import get_logger
|
9 |
+
from ..parallel import ParallelBackendEnum
|
10 |
+
from ..processors import ProcessorMixin
|
11 |
+
from ..typing import ArtifactType, SchedulerType, TokenizerType
|
12 |
+
from ..utils import resolve_component_cls
|
13 |
+
|
14 |
+
|
15 |
+
logger = get_logger()
|
16 |
+
|
17 |
+
# TODO(aryan): we most likely don't need this. take a look after refactoring more
|
18 |
+
# fmt: off
|
19 |
+
IGNORE_KEYS_FOR_COLLATION = {"height", "width", "num_frames", "frame_rate", "rope_interpolation_scale", "return_dict", "attention_kwargs", "cross_attention_kwargs", "joint_attention_kwargs", "latents_mean", "latents_std"}
|
20 |
+
# fmt: on
|
21 |
+
|
22 |
+
|
23 |
+
class ModelSpecification:
|
24 |
+
r"""
|
25 |
+
The ModelSpecification class is an interface to be used for Diffusion training recipes. It provides
|
26 |
+
loose structure about how to organize the code for training. The trainer implementations will
|
27 |
+
make use of this interface to load models, prepare conditions, prepare latents, forward pass, etc.
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
pretrained_model_name_or_path: Optional[str] = None,
|
33 |
+
tokenizer_id: Optional[str] = None,
|
34 |
+
tokenizer_2_id: Optional[str] = None,
|
35 |
+
tokenizer_3_id: Optional[str] = None,
|
36 |
+
text_encoder_id: Optional[str] = None,
|
37 |
+
text_encoder_2_id: Optional[str] = None,
|
38 |
+
text_encoder_3_id: Optional[str] = None,
|
39 |
+
transformer_id: Optional[str] = None,
|
40 |
+
vae_id: Optional[str] = None,
|
41 |
+
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
42 |
+
text_encoder_2_dtype: torch.dtype = torch.bfloat16,
|
43 |
+
text_encoder_3_dtype: torch.dtype = torch.bfloat16,
|
44 |
+
transformer_dtype: torch.dtype = torch.bfloat16,
|
45 |
+
vae_dtype: str = torch.bfloat16,
|
46 |
+
revision: Optional[str] = None,
|
47 |
+
cache_dir: Optional[str] = None,
|
48 |
+
condition_model_processors: List[ProcessorMixin] = None,
|
49 |
+
latent_model_processors: List[ProcessorMixin] = None,
|
50 |
+
) -> None:
|
51 |
+
self.pretrained_model_name_or_path = pretrained_model_name_or_path
|
52 |
+
self.tokenizer_id = tokenizer_id
|
53 |
+
self.tokenizer_2_id = tokenizer_2_id
|
54 |
+
self.tokenizer_3_id = tokenizer_3_id
|
55 |
+
self.text_encoder_id = text_encoder_id
|
56 |
+
self.text_encoder_2_id = text_encoder_2_id
|
57 |
+
self.text_encoder_3_id = text_encoder_3_id
|
58 |
+
self.transformer_id = transformer_id
|
59 |
+
self.vae_id = vae_id
|
60 |
+
self.text_encoder_dtype = text_encoder_dtype
|
61 |
+
self.text_encoder_2_dtype = text_encoder_2_dtype
|
62 |
+
self.text_encoder_3_dtype = text_encoder_3_dtype
|
63 |
+
self.transformer_dtype = transformer_dtype
|
64 |
+
self.vae_dtype = vae_dtype
|
65 |
+
self.revision = revision
|
66 |
+
self.cache_dir = cache_dir
|
67 |
+
self.condition_model_processors = condition_model_processors or []
|
68 |
+
self.latent_model_processors = latent_model_processors or []
|
69 |
+
|
70 |
+
self.transformer_config: Dict[str, Any] = None
|
71 |
+
self.vae_config: Dict[str, Any] = None
|
72 |
+
|
73 |
+
self._load_configs()
|
74 |
+
|
75 |
+
# TODO(aryan): revisit how to do this better without user having to worry about it
|
76 |
+
@property
|
77 |
+
def _resolution_dim_keys(self) -> Dict[str, Tuple[int, ...]]:
|
78 |
+
raise NotImplementedError(
|
79 |
+
f"ModelSpecification::_resolution_dim_keys is not implemented for {self.__class__.__name__}"
|
80 |
+
)
|
81 |
+
|
82 |
+
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
|
83 |
+
raise NotImplementedError(
|
84 |
+
f"ModelSpecification::load_condition_models is not implemented for {self.__class__.__name__}"
|
85 |
+
)
|
86 |
+
|
87 |
+
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
|
88 |
+
raise NotImplementedError(
|
89 |
+
f"ModelSpecification::load_latent_models is not implemented for {self.__class__.__name__}"
|
90 |
+
)
|
91 |
+
|
92 |
+
def load_diffusion_models(self) -> Dict[str, Union[torch.nn.Module]]:
|
93 |
+
raise NotImplementedError(
|
94 |
+
f"ModelSpecification::load_diffusion_models is not implemented for {self.__class__.__name__}"
|
95 |
+
)
|
96 |
+
|
97 |
+
def load_pipeline(
|
98 |
+
self,
|
99 |
+
tokenizer: Optional[TokenizerType] = None,
|
100 |
+
tokenizer_2: Optional[TokenizerType] = None,
|
101 |
+
tokenizer_3: Optional[TokenizerType] = None,
|
102 |
+
text_encoder: Optional[torch.nn.Module] = None,
|
103 |
+
text_encoder_2: Optional[torch.nn.Module] = None,
|
104 |
+
text_encoder_3: Optional[torch.nn.Module] = None,
|
105 |
+
transformer: Optional[torch.nn.Module] = None,
|
106 |
+
vae: Optional[torch.nn.Module] = None,
|
107 |
+
scheduler: Optional[SchedulerType] = None,
|
108 |
+
enable_slicing: bool = False,
|
109 |
+
enable_tiling: bool = False,
|
110 |
+
enable_model_cpu_offload: bool = False,
|
111 |
+
training: bool = False,
|
112 |
+
**kwargs,
|
113 |
+
) -> DiffusionPipeline:
|
114 |
+
raise NotImplementedError(
|
115 |
+
f"ModelSpecification::load_pipeline is not implemented for {self.__class__.__name__}"
|
116 |
+
)
|
117 |
+
|
118 |
+
def collate_fn(self, batch: List[List[Dict[str, torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
119 |
+
raise NotImplementedError(f"ModelSpecification::collate_fn is not implemented for {self.__class__.__name__}")
|
120 |
+
|
121 |
+
def prepare_conditions(self, **kwargs) -> Dict[str, Any]:
|
122 |
+
for processor in self.condition_model_processors:
|
123 |
+
result = processor(**kwargs)
|
124 |
+
result_keys = set(result.keys())
|
125 |
+
repeat_keys = result_keys.intersection(kwargs.keys())
|
126 |
+
if repeat_keys:
|
127 |
+
logger.warning(
|
128 |
+
f"Processor {processor.__class__.__name__} returned keys that already exist in "
|
129 |
+
f"conditions: {repeat_keys}. Overwriting the existing values, but this may not "
|
130 |
+
f"be intended. Please rename the keys in the processor to avoid conflicts."
|
131 |
+
)
|
132 |
+
kwargs.update(result)
|
133 |
+
return kwargs
|
134 |
+
|
135 |
+
def prepare_latents(self, **kwargs) -> Dict[str, Any]:
|
136 |
+
for processor in self.latent_model_processors:
|
137 |
+
result = processor(**kwargs)
|
138 |
+
result_keys = set(result.keys())
|
139 |
+
repeat_keys = result_keys.intersection(kwargs.keys())
|
140 |
+
if repeat_keys:
|
141 |
+
logger.warning(
|
142 |
+
f"Processor {processor.__class__.__name__} returned keys that already exist in "
|
143 |
+
f"conditions: {repeat_keys}. Overwriting the existing values, but this may not "
|
144 |
+
f"be intended. Please rename the keys in the processor to avoid conflicts."
|
145 |
+
)
|
146 |
+
kwargs.update(result)
|
147 |
+
return kwargs
|
148 |
+
|
149 |
+
def collate_conditions(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
|
150 |
+
keys = list(data[0].keys())
|
151 |
+
collated_data = {}
|
152 |
+
for key in keys:
|
153 |
+
if key in IGNORE_KEYS_FOR_COLLATION:
|
154 |
+
collated_data[key] = data[0][key]
|
155 |
+
continue
|
156 |
+
collated_d = [d[key] for d in data]
|
157 |
+
if isinstance(collated_d[0], torch.Tensor):
|
158 |
+
collated_d = torch.cat(collated_d)
|
159 |
+
collated_data[key] = collated_d
|
160 |
+
return collated_data
|
161 |
+
|
162 |
+
def collate_latents(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
|
163 |
+
keys = list(data[0].keys())
|
164 |
+
collated_data = {}
|
165 |
+
for key in keys:
|
166 |
+
if key in IGNORE_KEYS_FOR_COLLATION:
|
167 |
+
collated_data[key] = data[0][key]
|
168 |
+
continue
|
169 |
+
collated_d = [d[key] for d in data]
|
170 |
+
# TODO(aryan): Support multi-resolution collation
|
171 |
+
if isinstance(collated_d[0], torch.Tensor):
|
172 |
+
collated_d = torch.cat(collated_d)
|
173 |
+
collated_data[key] = collated_d
|
174 |
+
return collated_data
|
175 |
+
|
176 |
+
def forward(
|
177 |
+
self, transformer: torch.nn.Module, generator: Optional[torch.Generator] = None, **kwargs
|
178 |
+
) -> Dict[str, torch.Tensor]:
|
179 |
+
raise NotImplementedError(f"ModelSpecification::forward is not implemented for {self.__class__.__name__}")
|
180 |
+
|
181 |
+
def validation(
|
182 |
+
self,
|
183 |
+
pipeline: DiffusionPipeline,
|
184 |
+
prompt: Optional[str] = None,
|
185 |
+
image: Optional[Image] = None,
|
186 |
+
video: Optional[List[Image]] = None,
|
187 |
+
height: Optional[int] = None,
|
188 |
+
width: Optional[int] = None,
|
189 |
+
num_frames: Optional[int] = None,
|
190 |
+
frame_rate: Optional[int] = None,
|
191 |
+
generator: Optional[torch.Generator] = None,
|
192 |
+
) -> List[ArtifactType]:
|
193 |
+
raise NotImplementedError(f"ModelSpecification::validation is not implemented for {self.__class__.__name__}")
|
194 |
+
|
195 |
+
def _save_lora_weights(
|
196 |
+
self,
|
197 |
+
directory: str,
|
198 |
+
transformer: torch.nn.Module,
|
199 |
+
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
200 |
+
scheduler: Optional[SchedulerType] = None,
|
201 |
+
) -> None:
|
202 |
+
r"""
|
203 |
+
Save the lora state dicts of the model to the given directory.
|
204 |
+
|
205 |
+
This API is not backwards compatible and will be changed in near future.
|
206 |
+
"""
|
207 |
+
raise NotImplementedError(
|
208 |
+
f"ModelSpecification::save_lora_weights is not implemented for {self.__class__.__name__}"
|
209 |
+
)
|
210 |
+
|
211 |
+
def _save_model(
|
212 |
+
self,
|
213 |
+
directory: str,
|
214 |
+
transformer: torch.nn.Module,
|
215 |
+
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
216 |
+
scheduler: Optional[SchedulerType] = None,
|
217 |
+
) -> None:
|
218 |
+
r"""
|
219 |
+
Save the state dicts to the given directory.
|
220 |
+
|
221 |
+
This API is not backwards compatible and will be changed in near future.
|
222 |
+
"""
|
223 |
+
raise NotImplementedError(f"ModelSpecification::save_model is not implemented for {self.__class__.__name__}")
|
224 |
+
|
225 |
+
def apply_tensor_parallel(
|
226 |
+
self,
|
227 |
+
backend: ParallelBackendEnum,
|
228 |
+
device_mesh: torch.distributed.DeviceMesh,
|
229 |
+
text_encoder: torch.nn.Module,
|
230 |
+
text_encoder_2: torch.nn.Module,
|
231 |
+
text_encoder_3: torch.nn.Module,
|
232 |
+
transformer: torch.nn.Module,
|
233 |
+
vae: torch.nn.Module,
|
234 |
+
) -> None:
|
235 |
+
raise NotImplementedError(
|
236 |
+
f"ModelSpecification::apply_tensor_parallel is not implemented for {self.__class__.__name__}"
|
237 |
+
)
|
238 |
+
|
239 |
+
def _load_configs(self) -> None:
|
240 |
+
self._load_transformer_config()
|
241 |
+
self._load_vae_config()
|
242 |
+
|
243 |
+
def _load_transformer_config(self) -> None:
|
244 |
+
if self.transformer_id is not None:
|
245 |
+
transformer_cls = resolve_component_cls(
|
246 |
+
self.transformer_id,
|
247 |
+
component_name="_class_name",
|
248 |
+
filename="config.json",
|
249 |
+
revision=self.revision,
|
250 |
+
cache_dir=self.cache_dir,
|
251 |
+
)
|
252 |
+
self.transformer_config = transformer_cls.load_config(
|
253 |
+
self.transformer_id, revision=self.revision, cache_dir=self.cache_dir
|
254 |
+
)
|
255 |
+
else:
|
256 |
+
transformer_cls = resolve_component_cls(
|
257 |
+
self.pretrained_model_name_or_path,
|
258 |
+
component_name="transformer",
|
259 |
+
filename="model_index.json",
|
260 |
+
revision=self.revision,
|
261 |
+
cache_dir=self.cache_dir,
|
262 |
+
)
|
263 |
+
self.transformer_config = transformer_cls.load_config(
|
264 |
+
self.pretrained_model_name_or_path,
|
265 |
+
subfolder="transformer",
|
266 |
+
revision=self.revision,
|
267 |
+
cache_dir=self.cache_dir,
|
268 |
+
)
|
269 |
+
self.transformer_config = FrozenDict(**self.transformer_config)
|
270 |
+
|
271 |
+
def _load_vae_config(self) -> None:
|
272 |
+
if self.vae_id is not None:
|
273 |
+
vae_cls = resolve_component_cls(
|
274 |
+
self.vae_id,
|
275 |
+
component_name="_class_name",
|
276 |
+
filename="config.json",
|
277 |
+
revision=self.revision,
|
278 |
+
cache_dir=self.cache_dir,
|
279 |
+
)
|
280 |
+
self.vae_config = vae_cls.load_config(self.vae_id, revision=self.revision, cache_dir=self.cache_dir)
|
281 |
+
else:
|
282 |
+
vae_cls = resolve_component_cls(
|
283 |
+
self.pretrained_model_name_or_path,
|
284 |
+
component_name="vae",
|
285 |
+
filename="model_index.json",
|
286 |
+
revision=self.revision,
|
287 |
+
cache_dir=self.cache_dir,
|
288 |
+
)
|
289 |
+
self.vae_config = vae_cls.load_config(
|
290 |
+
self.pretrained_model_name_or_path, subfolder="vae", revision=self.revision, cache_dir=self.cache_dir
|
291 |
+
)
|
292 |
+
self.vae_config = FrozenDict(**self.vae_config)
|
finetrainers/models/utils.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from diffusers.utils.torch_utils import randn_tensor
|
6 |
+
|
7 |
+
|
8 |
+
class DiagonalGaussianDistribution(object):
|
9 |
+
def __init__(self, parameters: torch.Tensor, deterministic: bool = False, _dim: int = 1):
|
10 |
+
# Note: _dim is the new argument added here after copying from diffusers
|
11 |
+
self.parameters = parameters
|
12 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=_dim)
|
13 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
14 |
+
self.deterministic = deterministic
|
15 |
+
self.std = torch.exp(0.5 * self.logvar)
|
16 |
+
self.var = torch.exp(self.logvar)
|
17 |
+
if self.deterministic:
|
18 |
+
self.var = self.std = torch.zeros_like(
|
19 |
+
self.mean, device=self.parameters.device, dtype=self.parameters.dtype
|
20 |
+
)
|
21 |
+
|
22 |
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
|
23 |
+
# make sure sample is on the same device as the parameters and has same dtype
|
24 |
+
sample = randn_tensor(
|
25 |
+
self.mean.shape,
|
26 |
+
generator=generator,
|
27 |
+
device=self.parameters.device,
|
28 |
+
dtype=self.parameters.dtype,
|
29 |
+
)
|
30 |
+
x = self.mean + self.std * sample
|
31 |
+
return x
|
32 |
+
|
33 |
+
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
|
34 |
+
if self.deterministic:
|
35 |
+
return torch.Tensor([0.0])
|
36 |
+
else:
|
37 |
+
if other is None:
|
38 |
+
return 0.5 * torch.sum(
|
39 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
40 |
+
dim=[1, 2, 3],
|
41 |
+
)
|
42 |
+
else:
|
43 |
+
return 0.5 * torch.sum(
|
44 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
45 |
+
+ self.var / other.var
|
46 |
+
- 1.0
|
47 |
+
- self.logvar
|
48 |
+
+ other.logvar,
|
49 |
+
dim=[1, 2, 3],
|
50 |
+
)
|
51 |
+
|
52 |
+
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
|
53 |
+
if self.deterministic:
|
54 |
+
return torch.Tensor([0.0])
|
55 |
+
logtwopi = np.log(2.0 * np.pi)
|
56 |
+
return 0.5 * torch.sum(
|
57 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
58 |
+
dim=dims,
|
59 |
+
)
|
60 |
+
|
61 |
+
def mode(self) -> torch.Tensor:
|
62 |
+
return self.mean
|
finetrainers/models/wan/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .base_specification import WanModelSpecification
|
finetrainers/models/wan/base_specification.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Any, Dict, List, Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from accelerate import init_empty_weights
|
6 |
+
from diffusers import (
|
7 |
+
AutoencoderKLWan,
|
8 |
+
FlowMatchEulerDiscreteScheduler,
|
9 |
+
WanImageToVideoPipeline,
|
10 |
+
WanPipeline,
|
11 |
+
WanTransformer3DModel,
|
12 |
+
)
|
13 |
+
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
|
14 |
+
from PIL.Image import Image
|
15 |
+
from transformers import AutoModel, AutoTokenizer, UMT5EncoderModel
|
16 |
+
|
17 |
+
from ... import data
|
18 |
+
from ... import functional as FF
|
19 |
+
from ...logging import get_logger
|
20 |
+
from ...processors import ProcessorMixin, T5Processor
|
21 |
+
from ...typing import ArtifactType, SchedulerType
|
22 |
+
from ...utils import get_non_null_items
|
23 |
+
from ..modeling_utils import ModelSpecification
|
24 |
+
|
25 |
+
|
26 |
+
logger = get_logger()
|
27 |
+
|
28 |
+
|
29 |
+
class WanLatentEncodeProcessor(ProcessorMixin):
|
30 |
+
r"""
|
31 |
+
Processor to encode image/video into latents using the Wan VAE.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
output_names (`List[str]`):
|
35 |
+
The names of the outputs that the processor returns. The outputs are in the following order:
|
36 |
+
- latents: The latents of the input image/video.
|
37 |
+
- num_frames: The number of frames in the input video.
|
38 |
+
- height: The height of the input image/video.
|
39 |
+
- width: The width of the input image/video.
|
40 |
+
- latents_mean: The latent channel means from the VAE state dict.
|
41 |
+
- latents_std: The latent channel standard deviations from the VAE state dict.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(self, output_names: List[str]):
|
45 |
+
super().__init__()
|
46 |
+
self.output_names = output_names
|
47 |
+
assert len(self.output_names) == 1
|
48 |
+
|
49 |
+
def forward(
|
50 |
+
self,
|
51 |
+
vae: AutoencoderKLWan,
|
52 |
+
image: Optional[torch.Tensor] = None,
|
53 |
+
video: Optional[torch.Tensor] = None,
|
54 |
+
generator: Optional[torch.Generator] = None,
|
55 |
+
compute_posterior: bool = True,
|
56 |
+
) -> Dict[str, torch.Tensor]:
|
57 |
+
device = vae.device
|
58 |
+
dtype = vae.dtype
|
59 |
+
|
60 |
+
if image is not None:
|
61 |
+
video = image.unsqueeze(1)
|
62 |
+
|
63 |
+
assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
|
64 |
+
video = video.to(device=device, dtype=vae.dtype)
|
65 |
+
video = video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
|
66 |
+
|
67 |
+
if compute_posterior:
|
68 |
+
latents = vae.encode(video).latent_dist.sample(generator=generator)
|
69 |
+
latents = latents.to(dtype=dtype)
|
70 |
+
else:
|
71 |
+
# TODO(aryan): refactor in diffusers to have use_slicing attribute
|
72 |
+
# if vae.use_slicing and video.shape[0] > 1:
|
73 |
+
# encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
|
74 |
+
# moments = torch.cat(encoded_slices)
|
75 |
+
# else:
|
76 |
+
# moments = vae._encode(video)
|
77 |
+
moments = vae._encode(video)
|
78 |
+
latents = moments.to(dtype=dtype)
|
79 |
+
|
80 |
+
return {self.output_names[0]: latents}
|
81 |
+
|
82 |
+
|
83 |
+
class WanModelSpecification(ModelSpecification):
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
pretrained_model_name_or_path: str = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
|
87 |
+
tokenizer_id: Optional[str] = None,
|
88 |
+
text_encoder_id: Optional[str] = None,
|
89 |
+
transformer_id: Optional[str] = None,
|
90 |
+
vae_id: Optional[str] = None,
|
91 |
+
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
92 |
+
transformer_dtype: torch.dtype = torch.bfloat16,
|
93 |
+
vae_dtype: torch.dtype = torch.bfloat16,
|
94 |
+
revision: Optional[str] = None,
|
95 |
+
cache_dir: Optional[str] = None,
|
96 |
+
condition_model_processors: List[ProcessorMixin] = None,
|
97 |
+
latent_model_processors: List[ProcessorMixin] = None,
|
98 |
+
**kwargs,
|
99 |
+
) -> None:
|
100 |
+
super().__init__(
|
101 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
102 |
+
tokenizer_id=tokenizer_id,
|
103 |
+
text_encoder_id=text_encoder_id,
|
104 |
+
transformer_id=transformer_id,
|
105 |
+
vae_id=vae_id,
|
106 |
+
text_encoder_dtype=text_encoder_dtype,
|
107 |
+
transformer_dtype=transformer_dtype,
|
108 |
+
vae_dtype=vae_dtype,
|
109 |
+
revision=revision,
|
110 |
+
cache_dir=cache_dir,
|
111 |
+
)
|
112 |
+
|
113 |
+
if condition_model_processors is None:
|
114 |
+
condition_model_processors = [T5Processor(["prompt_embeds", "prompt_attention_mask"])]
|
115 |
+
if latent_model_processors is None:
|
116 |
+
latent_model_processors = [WanLatentEncodeProcessor(["latents"])]
|
117 |
+
|
118 |
+
self.condition_model_processors = condition_model_processors
|
119 |
+
self.latent_model_processors = latent_model_processors
|
120 |
+
|
121 |
+
@property
|
122 |
+
def _resolution_dim_keys(self):
|
123 |
+
# TODO
|
124 |
+
return {
|
125 |
+
"latents": (2, 3, 4),
|
126 |
+
}
|
127 |
+
|
128 |
+
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
|
129 |
+
if self.tokenizer_id is not None:
|
130 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
131 |
+
self.tokenizer_id, revision=self.revision, cache_dir=self.cache_dir
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
135 |
+
self.pretrained_model_name_or_path,
|
136 |
+
subfolder="tokenizer",
|
137 |
+
revision=self.revision,
|
138 |
+
cache_dir=self.cache_dir,
|
139 |
+
)
|
140 |
+
|
141 |
+
if self.text_encoder_id is not None:
|
142 |
+
text_encoder = AutoModel.from_pretrained(
|
143 |
+
self.text_encoder_id,
|
144 |
+
torch_dtype=self.text_encoder_dtype,
|
145 |
+
revision=self.revision,
|
146 |
+
cache_dir=self.cache_dir,
|
147 |
+
)
|
148 |
+
else:
|
149 |
+
text_encoder = UMT5EncoderModel.from_pretrained(
|
150 |
+
self.pretrained_model_name_or_path,
|
151 |
+
subfolder="text_encoder",
|
152 |
+
torch_dtype=self.text_encoder_dtype,
|
153 |
+
revision=self.revision,
|
154 |
+
cache_dir=self.cache_dir,
|
155 |
+
)
|
156 |
+
|
157 |
+
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
|
158 |
+
|
159 |
+
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
|
160 |
+
if self.vae_id is not None:
|
161 |
+
vae = AutoencoderKLWan.from_pretrained(
|
162 |
+
self.vae_id,
|
163 |
+
torch_dtype=self.vae_dtype,
|
164 |
+
revision=self.revision,
|
165 |
+
cache_dir=self.cache_dir,
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
vae = AutoencoderKLWan.from_pretrained(
|
169 |
+
self.pretrained_model_name_or_path,
|
170 |
+
subfolder="vae",
|
171 |
+
torch_dtype=self.vae_dtype,
|
172 |
+
revision=self.revision,
|
173 |
+
cache_dir=self.cache_dir,
|
174 |
+
)
|
175 |
+
|
176 |
+
return {"vae": vae}
|
177 |
+
|
178 |
+
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
|
179 |
+
if self.transformer_id is not None:
|
180 |
+
transformer = WanTransformer3DModel.from_pretrained(
|
181 |
+
self.transformer_id,
|
182 |
+
torch_dtype=self.transformer_dtype,
|
183 |
+
revision=self.revision,
|
184 |
+
cache_dir=self.cache_dir,
|
185 |
+
)
|
186 |
+
else:
|
187 |
+
transformer = WanTransformer3DModel.from_pretrained(
|
188 |
+
self.pretrained_model_name_or_path,
|
189 |
+
subfolder="transformer",
|
190 |
+
torch_dtype=self.transformer_dtype,
|
191 |
+
revision=self.revision,
|
192 |
+
cache_dir=self.cache_dir,
|
193 |
+
)
|
194 |
+
|
195 |
+
scheduler = FlowMatchEulerDiscreteScheduler()
|
196 |
+
|
197 |
+
return {"transformer": transformer, "scheduler": scheduler}
|
198 |
+
|
199 |
+
def load_pipeline(
|
200 |
+
self,
|
201 |
+
tokenizer: Optional[AutoTokenizer] = None,
|
202 |
+
text_encoder: Optional[UMT5EncoderModel] = None,
|
203 |
+
transformer: Optional[WanTransformer3DModel] = None,
|
204 |
+
vae: Optional[AutoencoderKLWan] = None,
|
205 |
+
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
|
206 |
+
enable_slicing: bool = False,
|
207 |
+
enable_tiling: bool = False,
|
208 |
+
enable_model_cpu_offload: bool = False,
|
209 |
+
training: bool = False,
|
210 |
+
**kwargs,
|
211 |
+
) -> WanPipeline:
|
212 |
+
components = {
|
213 |
+
"tokenizer": tokenizer,
|
214 |
+
"text_encoder": text_encoder,
|
215 |
+
"transformer": transformer,
|
216 |
+
"vae": vae,
|
217 |
+
"scheduler": scheduler,
|
218 |
+
}
|
219 |
+
components = get_non_null_items(components)
|
220 |
+
|
221 |
+
pipe = WanPipeline.from_pretrained(
|
222 |
+
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
|
223 |
+
)
|
224 |
+
pipe.text_encoder.to(self.text_encoder_dtype)
|
225 |
+
pipe.vae.to(self.vae_dtype)
|
226 |
+
|
227 |
+
if not training:
|
228 |
+
pipe.transformer.to(self.transformer_dtype)
|
229 |
+
|
230 |
+
# TODO(aryan): add support in diffusers
|
231 |
+
# if enable_slicing:
|
232 |
+
# pipe.vae.enable_slicing()
|
233 |
+
# if enable_tiling:
|
234 |
+
# pipe.vae.enable_tiling()
|
235 |
+
if enable_model_cpu_offload:
|
236 |
+
pipe.enable_model_cpu_offload()
|
237 |
+
|
238 |
+
return pipe
|
239 |
+
|
240 |
+
@torch.no_grad()
|
241 |
+
def prepare_conditions(
|
242 |
+
self,
|
243 |
+
tokenizer: AutoTokenizer,
|
244 |
+
text_encoder: UMT5EncoderModel,
|
245 |
+
caption: str,
|
246 |
+
max_sequence_length: int = 512,
|
247 |
+
**kwargs,
|
248 |
+
) -> Dict[str, Any]:
|
249 |
+
conditions = {
|
250 |
+
"tokenizer": tokenizer,
|
251 |
+
"text_encoder": text_encoder,
|
252 |
+
"caption": caption,
|
253 |
+
"max_sequence_length": max_sequence_length,
|
254 |
+
**kwargs,
|
255 |
+
}
|
256 |
+
input_keys = set(conditions.keys())
|
257 |
+
conditions = super().prepare_conditions(**conditions)
|
258 |
+
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
259 |
+
conditions.pop("prompt_attention_mask", None)
|
260 |
+
return conditions
|
261 |
+
|
262 |
+
@torch.no_grad()
|
263 |
+
def prepare_latents(
|
264 |
+
self,
|
265 |
+
vae: AutoencoderKLWan,
|
266 |
+
image: Optional[torch.Tensor] = None,
|
267 |
+
video: Optional[torch.Tensor] = None,
|
268 |
+
generator: Optional[torch.Generator] = None,
|
269 |
+
compute_posterior: bool = True,
|
270 |
+
**kwargs,
|
271 |
+
) -> Dict[str, torch.Tensor]:
|
272 |
+
conditions = {
|
273 |
+
"vae": vae,
|
274 |
+
"image": image,
|
275 |
+
"video": video,
|
276 |
+
"generator": generator,
|
277 |
+
"compute_posterior": compute_posterior,
|
278 |
+
**kwargs,
|
279 |
+
}
|
280 |
+
input_keys = set(conditions.keys())
|
281 |
+
conditions = super().prepare_latents(**conditions)
|
282 |
+
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
283 |
+
return conditions
|
284 |
+
|
285 |
+
def forward(
|
286 |
+
self,
|
287 |
+
transformer: WanTransformer3DModel,
|
288 |
+
condition_model_conditions: Dict[str, torch.Tensor],
|
289 |
+
latent_model_conditions: Dict[str, torch.Tensor],
|
290 |
+
sigmas: torch.Tensor,
|
291 |
+
generator: Optional[torch.Generator] = None,
|
292 |
+
compute_posterior: bool = True,
|
293 |
+
**kwargs,
|
294 |
+
) -> Tuple[torch.Tensor, ...]:
|
295 |
+
if compute_posterior:
|
296 |
+
latents = latent_model_conditions.pop("latents")
|
297 |
+
else:
|
298 |
+
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
|
299 |
+
latents = posterior.sample(generator=generator)
|
300 |
+
del posterior
|
301 |
+
|
302 |
+
noise = torch.zeros_like(latents).normal_(generator=generator)
|
303 |
+
noisy_latents = FF.flow_match_xt(latents, noise, sigmas)
|
304 |
+
|
305 |
+
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
|
306 |
+
condition_model_conditions["encoder_hidden_states"] = condition_model_conditions.pop("prompt_embeds")
|
307 |
+
|
308 |
+
timesteps = (sigmas.flatten() * 1000.0).long()
|
309 |
+
|
310 |
+
pred = transformer(
|
311 |
+
**latent_model_conditions,
|
312 |
+
**condition_model_conditions,
|
313 |
+
timestep=timesteps,
|
314 |
+
return_dict=False,
|
315 |
+
)[0]
|
316 |
+
target = FF.flow_match_target(noise, latents)
|
317 |
+
|
318 |
+
return pred, target, sigmas
|
319 |
+
|
320 |
+
def validation(
|
321 |
+
self,
|
322 |
+
pipeline: WanPipeline,
|
323 |
+
prompt: str,
|
324 |
+
image: Optional[Image] = None,
|
325 |
+
height: Optional[int] = None,
|
326 |
+
width: Optional[int] = None,
|
327 |
+
num_frames: Optional[int] = None,
|
328 |
+
num_inference_steps: int = 50,
|
329 |
+
generator: Optional[torch.Generator] = None,
|
330 |
+
**kwargs,
|
331 |
+
) -> List[ArtifactType]:
|
332 |
+
if image is not None:
|
333 |
+
pipeline = WanImageToVideoPipeline.from_pipe(pipeline)
|
334 |
+
|
335 |
+
generation_kwargs = {
|
336 |
+
"prompt": prompt,
|
337 |
+
"image": image,
|
338 |
+
"height": height,
|
339 |
+
"width": width,
|
340 |
+
"num_frames": num_frames,
|
341 |
+
"num_inference_steps": num_inference_steps,
|
342 |
+
"generator": generator,
|
343 |
+
"return_dict": True,
|
344 |
+
"output_type": "pil",
|
345 |
+
}
|
346 |
+
generation_kwargs = get_non_null_items(generation_kwargs)
|
347 |
+
video = pipeline(**generation_kwargs).frames[0]
|
348 |
+
return [data.VideoArtifact(value=video)]
|
349 |
+
|
350 |
+
def _save_lora_weights(
|
351 |
+
self,
|
352 |
+
directory: str,
|
353 |
+
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
354 |
+
scheduler: Optional[SchedulerType] = None,
|
355 |
+
*args,
|
356 |
+
**kwargs,
|
357 |
+
) -> None:
|
358 |
+
# TODO(aryan): this needs refactoring
|
359 |
+
if transformer_state_dict is not None:
|
360 |
+
WanPipeline.save_lora_weights(directory, transformer_state_dict, safe_serialization=True)
|
361 |
+
if scheduler is not None:
|
362 |
+
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
363 |
+
|
364 |
+
def _save_model(
|
365 |
+
self,
|
366 |
+
directory: str,
|
367 |
+
transformer: WanTransformer3DModel,
|
368 |
+
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
369 |
+
scheduler: Optional[SchedulerType] = None,
|
370 |
+
) -> None:
|
371 |
+
# TODO(aryan): this needs refactoring
|
372 |
+
if transformer_state_dict is not None:
|
373 |
+
with init_empty_weights():
|
374 |
+
transformer_copy = WanTransformer3DModel.from_config(transformer.config)
|
375 |
+
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
|
376 |
+
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
|
377 |
+
if scheduler is not None:
|
378 |
+
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
finetrainers/optimizer.py
ADDED
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import math
|
3 |
+
from typing import Any, Callable, Dict, List, Optional, Type, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.distributed.checkpoint.state_dict import (
|
7 |
+
StateDictOptions,
|
8 |
+
get_optimizer_state_dict,
|
9 |
+
set_optimizer_state_dict,
|
10 |
+
)
|
11 |
+
from torch.distributed.checkpoint.stateful import Stateful
|
12 |
+
|
13 |
+
from .parallel import ParallelBackendEnum
|
14 |
+
from .utils.import_utils import is_bitsandbytes_available
|
15 |
+
|
16 |
+
|
17 |
+
class OptimizerWrapper(Stateful):
|
18 |
+
r"""
|
19 |
+
Optimizer wrapper that:
|
20 |
+
- allows step/zero_grad on multiple optimizers needed for virtual pipeline stages
|
21 |
+
- saves/loading optimizer state_dict at checkpoint
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
model_parts: List[torch.nn.Module],
|
27 |
+
optimizer_cls: Type[torch.optim.Optimizer],
|
28 |
+
optimizer_kwargs: Dict[str, Any],
|
29 |
+
) -> None:
|
30 |
+
self.optimizer_cls = optimizer_cls
|
31 |
+
self.optimizer_kwargs = optimizer_kwargs
|
32 |
+
|
33 |
+
self.optimizers = []
|
34 |
+
self.model_parts = model_parts
|
35 |
+
|
36 |
+
for model in self.model_parts:
|
37 |
+
optimizer = optimizer_cls(model.parameters(), **optimizer_kwargs)
|
38 |
+
self.optimizers.append(optimizer)
|
39 |
+
|
40 |
+
def step(self) -> None:
|
41 |
+
for optimizer in self.optimizers:
|
42 |
+
optimizer.step()
|
43 |
+
|
44 |
+
def zero_grad(self) -> None:
|
45 |
+
for optimizer in self.optimizers:
|
46 |
+
optimizer.zero_grad()
|
47 |
+
|
48 |
+
def state_dict(self) -> Dict[str, Any]:
|
49 |
+
func = functools.partial(
|
50 |
+
get_optimizer_state_dict,
|
51 |
+
options=StateDictOptions(flatten_optimizer_state_dict=True),
|
52 |
+
)
|
53 |
+
return {k: v for sd in map(func, self.model_parts, self.optimizers) for k, v in sd.items()}
|
54 |
+
|
55 |
+
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
|
56 |
+
func = functools.partial(
|
57 |
+
set_optimizer_state_dict,
|
58 |
+
optim_state_dict=state_dict,
|
59 |
+
options=StateDictOptions(flatten_optimizer_state_dict=True),
|
60 |
+
)
|
61 |
+
list(map(func, self.model_parts, self.optimizers))
|
62 |
+
|
63 |
+
|
64 |
+
class SchedulerWrapper:
|
65 |
+
def __init__(
|
66 |
+
self, optimizers, scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler], last_epoch: int
|
67 |
+
) -> None:
|
68 |
+
self.schedulers = []
|
69 |
+
for optimizer in optimizers:
|
70 |
+
self.schedulers.append(torch.optim.lr_scheduler.LambdaLR(optimizer, scheduler_lambda_fn, last_epoch))
|
71 |
+
|
72 |
+
def step(self) -> None:
|
73 |
+
for scheduler in self.schedulers:
|
74 |
+
scheduler.step()
|
75 |
+
|
76 |
+
def get_last_lr(self) -> List[float]:
|
77 |
+
# TODO(aryan): look into this later. Currently calling it leads to NCCL hang?????
|
78 |
+
return {f"lr_{idx}": scheduler.get_last_lr() for idx, scheduler in enumerate(self.schedulers)}
|
79 |
+
|
80 |
+
def get_lr_scheduler_state(self) -> Dict[str, Any]:
|
81 |
+
state_dict = {}
|
82 |
+
if len(self.schedulers) == 1:
|
83 |
+
state_dict["lr_scheduler"] = self.schedulers[0]
|
84 |
+
else:
|
85 |
+
# For now, pipeline-parallel with looped schedules does not support resharding for lr_scheduler.
|
86 |
+
# It should only support saving and loading a distributed checkpoint with the same number of pp ranks
|
87 |
+
for idx, lr_scheduler in enumerate(self.schedulers):
|
88 |
+
state_dict[f"lr_scheduler_{idx}"] = lr_scheduler
|
89 |
+
return state_dict
|
90 |
+
|
91 |
+
|
92 |
+
def get_optimizer(
|
93 |
+
parallel_backend: ParallelBackendEnum,
|
94 |
+
name: str,
|
95 |
+
model_parts: List[torch.nn.Module],
|
96 |
+
learning_rate: float = 1e-3,
|
97 |
+
beta1: float = 0.9,
|
98 |
+
beta2: float = 0.95,
|
99 |
+
beta3: float = 0.999,
|
100 |
+
epsilon: float = 1e-8,
|
101 |
+
weight_decay: float = 1e-4,
|
102 |
+
fused: bool = False,
|
103 |
+
) -> Union[torch.optim.Optimizer, OptimizerWrapper]:
|
104 |
+
name = name.lower()
|
105 |
+
|
106 |
+
_raise_errors_if_packages_not_available(name)
|
107 |
+
|
108 |
+
if name == "adam":
|
109 |
+
optimizer_cls = torch.optim.Adam
|
110 |
+
optimizer_kwargs = {
|
111 |
+
"lr": learning_rate,
|
112 |
+
"betas": (beta1, beta2),
|
113 |
+
"eps": epsilon,
|
114 |
+
"weight_decay": weight_decay,
|
115 |
+
"fused": fused,
|
116 |
+
}
|
117 |
+
elif name == "adamw":
|
118 |
+
optimizer_cls = torch.optim.AdamW
|
119 |
+
optimizer_kwargs = {
|
120 |
+
"lr": learning_rate,
|
121 |
+
"betas": (beta1, beta2),
|
122 |
+
"eps": epsilon,
|
123 |
+
"weight_decay": weight_decay,
|
124 |
+
"fused": fused,
|
125 |
+
}
|
126 |
+
elif name == "adam-bnb":
|
127 |
+
from bitsandbytes.optim import Adam
|
128 |
+
|
129 |
+
optimizer_cls = Adam
|
130 |
+
optimizer_kwargs = {
|
131 |
+
"lr": learning_rate,
|
132 |
+
"betas": (beta1, beta2),
|
133 |
+
"eps": epsilon,
|
134 |
+
"weight_decay": weight_decay,
|
135 |
+
}
|
136 |
+
elif name == "adamw-bnb":
|
137 |
+
from bitsandbytes.optim import AdamW
|
138 |
+
|
139 |
+
optimizer_cls = AdamW
|
140 |
+
optimizer_kwargs = {
|
141 |
+
"lr": learning_rate,
|
142 |
+
"betas": (beta1, beta2),
|
143 |
+
"eps": epsilon,
|
144 |
+
"weight_decay": weight_decay,
|
145 |
+
}
|
146 |
+
elif name == "adam-bnb-8bit":
|
147 |
+
from bitsandbytes.optim import Adam8bit
|
148 |
+
|
149 |
+
optimizer_cls = Adam8bit
|
150 |
+
optimizer_kwargs = {
|
151 |
+
"lr": learning_rate,
|
152 |
+
"betas": (beta1, beta2),
|
153 |
+
"eps": epsilon,
|
154 |
+
"weight_decay": weight_decay,
|
155 |
+
}
|
156 |
+
elif name == "adamw-bnb-8bit":
|
157 |
+
from bitsandbytes.optim import AdamW8bit
|
158 |
+
|
159 |
+
optimizer_cls = AdamW8bit
|
160 |
+
optimizer_kwargs = {
|
161 |
+
"lr": learning_rate,
|
162 |
+
"betas": (beta1, beta2),
|
163 |
+
"eps": epsilon,
|
164 |
+
"weight_decay": weight_decay,
|
165 |
+
}
|
166 |
+
|
167 |
+
# TODO(aryan): handle bitsandbytes and torchao
|
168 |
+
else:
|
169 |
+
raise ValueError(f"Unsupported optimizer: {name}")
|
170 |
+
|
171 |
+
if parallel_backend == ParallelBackendEnum.ACCELERATE:
|
172 |
+
return get_optimizer_accelerate(model_parts, optimizer_cls, optimizer_kwargs)
|
173 |
+
elif parallel_backend == ParallelBackendEnum.PTD:
|
174 |
+
return get_optimizer_ptd(model_parts, optimizer_cls, optimizer_kwargs)
|
175 |
+
|
176 |
+
|
177 |
+
def get_optimizer_accelerate(
|
178 |
+
model_parts: List[torch.nn.Module], optimizer_cls: Type[torch.optim.Optimizer], optimizer_kwargs: Dict[str, Any]
|
179 |
+
) -> torch.optim.Optimizer:
|
180 |
+
params = [param for model in model_parts for param in model.parameters() if param.requires_grad]
|
181 |
+
optimizer = optimizer_cls(params, **optimizer_kwargs)
|
182 |
+
return optimizer
|
183 |
+
|
184 |
+
|
185 |
+
def get_optimizer_ptd(
|
186 |
+
model_parts: List[torch.nn.Module], optimizer_cls: Type[torch.optim.Optimizer], optimizer_kwargs: Dict[str, Any]
|
187 |
+
) -> OptimizerWrapper:
|
188 |
+
return OptimizerWrapper(model_parts, optimizer_cls, optimizer_kwargs)
|
189 |
+
|
190 |
+
|
191 |
+
def get_lr_scheduler(
|
192 |
+
parallel_backend: ParallelBackendEnum,
|
193 |
+
name: str,
|
194 |
+
optimizer: Union[torch.optim.Optimizer, OptimizerWrapper],
|
195 |
+
step_rules: Optional[str] = None,
|
196 |
+
num_warmup_steps: Optional[int] = None,
|
197 |
+
num_training_steps: Optional[int] = None,
|
198 |
+
num_cycles: int = 1,
|
199 |
+
power: float = 1.0,
|
200 |
+
lr_init: float = 1e-3,
|
201 |
+
lr_end: float = 1e-7,
|
202 |
+
last_epoch: int = -1,
|
203 |
+
) -> Union[torch.optim.lr_scheduler.LambdaLR, SchedulerWrapper]:
|
204 |
+
name = name.lower()
|
205 |
+
if name == "constant":
|
206 |
+
scheduler_lambda_fn = get_constant_schedule()
|
207 |
+
elif name == "constant_with_warmup":
|
208 |
+
scheduler_lambda_fn = get_constant_schedule_with_warmup(num_warmup_steps)
|
209 |
+
elif name == "piecewise_constant":
|
210 |
+
scheduler_lambda_fn = get_piecewise_constant_schedule(step_rules)
|
211 |
+
elif name == "linear":
|
212 |
+
scheduler_lambda_fn = get_linear_schedule_with_warmup(num_warmup_steps, num_training_steps)
|
213 |
+
elif name == "cosine":
|
214 |
+
scheduler_lambda_fn = get_cosine_schedule_with_warmup(num_warmup_steps, num_training_steps, num_cycles)
|
215 |
+
elif name == "cosine_with_restarts":
|
216 |
+
scheduler_lambda_fn = get_cosine_with_hard_restarts_schedule_with_warmup(
|
217 |
+
num_warmup_steps, num_training_steps, num_cycles
|
218 |
+
)
|
219 |
+
elif name == "polynomial":
|
220 |
+
scheduler_lambda_fn = get_polynomial_decay_schedule_with_warmup(
|
221 |
+
num_warmup_steps, num_training_steps, lr_init, lr_end, power
|
222 |
+
)
|
223 |
+
else:
|
224 |
+
raise ValueError(f"Unsupported scheduler: {name}")
|
225 |
+
|
226 |
+
if parallel_backend == ParallelBackendEnum.ACCELERATE:
|
227 |
+
return get_lr_scheduler_accelerate(optimizer, scheduler_lambda_fn, last_epoch)
|
228 |
+
elif parallel_backend == ParallelBackendEnum.PTD:
|
229 |
+
return get_lr_scheduler_ptd(optimizer, scheduler_lambda_fn, last_epoch)
|
230 |
+
|
231 |
+
|
232 |
+
def get_lr_scheduler_accelerate(
|
233 |
+
optimizer: torch.optim.Optimizer,
|
234 |
+
scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler],
|
235 |
+
last_epoch: int = -1,
|
236 |
+
) -> torch.optim.lr_scheduler.LambdaLR:
|
237 |
+
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, scheduler_lambda_fn, last_epoch)
|
238 |
+
return scheduler
|
239 |
+
|
240 |
+
|
241 |
+
def get_lr_scheduler_ptd(
|
242 |
+
optimizer: OptimizerWrapper, scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler], last_epoch: int = -1
|
243 |
+
) -> SchedulerWrapper:
|
244 |
+
return SchedulerWrapper(optimizer.optimizers, scheduler_lambda_fn, last_epoch)
|
245 |
+
|
246 |
+
|
247 |
+
# ==============================
|
248 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/196aef5a6f76e1ad6ba889184860c3633d166910/src/diffusers/optimization.py
|
249 |
+
# ==============================
|
250 |
+
|
251 |
+
|
252 |
+
def get_constant_schedule() -> Callable[[int], float]:
|
253 |
+
r"""
|
254 |
+
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
|
255 |
+
"""
|
256 |
+
|
257 |
+
def lr_lambda(current_step: int):
|
258 |
+
return 1.0
|
259 |
+
|
260 |
+
return lr_lambda
|
261 |
+
|
262 |
+
|
263 |
+
def get_constant_schedule_with_warmup(num_warmup_steps: int) -> Callable[[int], float]:
|
264 |
+
r"""
|
265 |
+
Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
|
266 |
+
increases linearly between 0 and the initial lr set in the optimizer.
|
267 |
+
|
268 |
+
Args:
|
269 |
+
num_warmup_steps (`int`):
|
270 |
+
The number of steps for the warmup phase.
|
271 |
+
"""
|
272 |
+
|
273 |
+
def lr_lambda(current_step: int):
|
274 |
+
if current_step < num_warmup_steps:
|
275 |
+
return float(current_step) / float(max(1.0, num_warmup_steps))
|
276 |
+
return 1.0
|
277 |
+
|
278 |
+
return lr_lambda
|
279 |
+
|
280 |
+
|
281 |
+
def get_piecewise_constant_schedule(step_rules: str) -> Callable[[int], float]:
|
282 |
+
r"""
|
283 |
+
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
|
284 |
+
|
285 |
+
Args:
|
286 |
+
step_rules (`string`):
|
287 |
+
The rules for the learning rate. ex: rule_steps="1:10,0.1:20,0.01:30,0.005" it means that the learning rate
|
288 |
+
if multiple 1 for the first 10 steps, multiple 0.1 for the next 20 steps, multiple 0.01 for the next 30
|
289 |
+
steps and multiple 0.005 for the other steps.
|
290 |
+
"""
|
291 |
+
|
292 |
+
rules_dict = {}
|
293 |
+
rule_list = step_rules.split(",")
|
294 |
+
for rule_str in rule_list[:-1]:
|
295 |
+
value_str, steps_str = rule_str.split(":")
|
296 |
+
steps = int(steps_str)
|
297 |
+
value = float(value_str)
|
298 |
+
rules_dict[steps] = value
|
299 |
+
last_lr_multiple = float(rule_list[-1])
|
300 |
+
|
301 |
+
def create_rules_function(rules_dict, last_lr_multiple):
|
302 |
+
def rule_func(steps: int) -> float:
|
303 |
+
sorted_steps = sorted(rules_dict.keys())
|
304 |
+
for i, sorted_step in enumerate(sorted_steps):
|
305 |
+
if steps < sorted_step:
|
306 |
+
return rules_dict[sorted_steps[i]]
|
307 |
+
return last_lr_multiple
|
308 |
+
|
309 |
+
return rule_func
|
310 |
+
|
311 |
+
rules_func = create_rules_function(rules_dict, last_lr_multiple)
|
312 |
+
return rules_func
|
313 |
+
|
314 |
+
|
315 |
+
def get_linear_schedule_with_warmup(num_warmup_steps: int, num_training_steps: int) -> Callable[[int], float]:
|
316 |
+
r"""
|
317 |
+
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
|
318 |
+
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
|
319 |
+
|
320 |
+
Args:
|
321 |
+
num_warmup_steps (`int`):
|
322 |
+
The number of steps for the warmup phase.
|
323 |
+
num_training_steps (`int`):
|
324 |
+
The total number of training steps.
|
325 |
+
"""
|
326 |
+
|
327 |
+
def lr_lambda(current_step: int):
|
328 |
+
if current_step < num_warmup_steps:
|
329 |
+
return float(current_step) / float(max(1, num_warmup_steps))
|
330 |
+
return max(
|
331 |
+
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
|
332 |
+
)
|
333 |
+
|
334 |
+
return lr_lambda
|
335 |
+
|
336 |
+
|
337 |
+
def get_cosine_schedule_with_warmup(
|
338 |
+
num_warmup_steps: int,
|
339 |
+
num_training_steps: int,
|
340 |
+
num_cycles: float = 0.5,
|
341 |
+
) -> Callable[[int], float]:
|
342 |
+
r"""
|
343 |
+
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
344 |
+
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
|
345 |
+
initial lr set in the optimizer.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
num_warmup_steps (`int`):
|
349 |
+
The number of steps for the warmup phase.
|
350 |
+
num_training_steps (`int`):
|
351 |
+
The total number of training steps.
|
352 |
+
num_periods (`float`, *optional*, defaults to 0.5):
|
353 |
+
The number of periods of the cosine function in a schedule (the default is to just decrease from the max
|
354 |
+
value to 0 following a half-cosine).
|
355 |
+
"""
|
356 |
+
|
357 |
+
def lr_lambda(current_step):
|
358 |
+
if current_step < num_warmup_steps:
|
359 |
+
return float(current_step) / float(max(1, num_warmup_steps))
|
360 |
+
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
|
361 |
+
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
|
362 |
+
|
363 |
+
return lr_lambda
|
364 |
+
|
365 |
+
|
366 |
+
def get_cosine_with_hard_restarts_schedule_with_warmup(
|
367 |
+
num_warmup_steps: int,
|
368 |
+
num_training_steps: int,
|
369 |
+
num_cycles: int = 1,
|
370 |
+
) -> Callable[[int], float]:
|
371 |
+
r"""
|
372 |
+
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
373 |
+
initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
|
374 |
+
linearly between 0 and the initial lr set in the optimizer.
|
375 |
+
|
376 |
+
Args:
|
377 |
+
num_warmup_steps (`int`):
|
378 |
+
The number of steps for the warmup phase.
|
379 |
+
num_training_steps (`int`):
|
380 |
+
The total number of training steps.
|
381 |
+
num_cycles (`int`, *optional*, defaults to 1):
|
382 |
+
The number of hard restarts to use.
|
383 |
+
"""
|
384 |
+
|
385 |
+
def lr_lambda(current_step):
|
386 |
+
if current_step < num_warmup_steps:
|
387 |
+
return float(current_step) / float(max(1, num_warmup_steps))
|
388 |
+
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
|
389 |
+
if progress >= 1.0:
|
390 |
+
return 0.0
|
391 |
+
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))
|
392 |
+
|
393 |
+
return lr_lambda
|
394 |
+
|
395 |
+
|
396 |
+
def get_polynomial_decay_schedule_with_warmup(
|
397 |
+
num_warmup_steps: int,
|
398 |
+
num_training_steps: int,
|
399 |
+
lr_init: float,
|
400 |
+
lr_end: float = 1e-7,
|
401 |
+
power: float = 1.0,
|
402 |
+
) -> Callable[[int], float]:
|
403 |
+
r"""
|
404 |
+
Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
|
405 |
+
optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
|
406 |
+
initial lr set in the optimizer.
|
407 |
+
|
408 |
+
Args:
|
409 |
+
num_warmup_steps (`int`):
|
410 |
+
The number of steps for the warmup phase.
|
411 |
+
num_training_steps (`int`):
|
412 |
+
The total number of training steps.
|
413 |
+
lr_end (`float`, *optional*, defaults to 1e-7):
|
414 |
+
The end LR.
|
415 |
+
power (`float`, *optional*, defaults to 1.0):
|
416 |
+
Power factor.
|
417 |
+
|
418 |
+
Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT implementation at
|
419 |
+
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37
|
420 |
+
"""
|
421 |
+
|
422 |
+
if not (lr_init > lr_end):
|
423 |
+
raise ValueError(f"lr_end ({lr_end}) must be smaller than initial lr ({lr_init})")
|
424 |
+
|
425 |
+
def lr_lambda(current_step: int):
|
426 |
+
if current_step < num_warmup_steps:
|
427 |
+
return float(current_step) / float(max(1, num_warmup_steps))
|
428 |
+
elif current_step > num_training_steps:
|
429 |
+
return lr_end / lr_init # as LambdaLR multiplies by lr_init
|
430 |
+
else:
|
431 |
+
lr_range = lr_init - lr_end
|
432 |
+
decay_steps = num_training_steps - num_warmup_steps
|
433 |
+
pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
|
434 |
+
decay = lr_range * pct_remaining**power + lr_end
|
435 |
+
return decay / lr_init # as LambdaLR multiplies by lr_init
|
436 |
+
|
437 |
+
return lr_lambda
|
438 |
+
|
439 |
+
|
440 |
+
def _raise_errors_if_packages_not_available(name: str) -> None:
|
441 |
+
name_split = name.split("-")
|
442 |
+
if len(name_split) < 2:
|
443 |
+
return
|
444 |
+
package_name = name_split[1]
|
445 |
+
if package_name == "bnb":
|
446 |
+
if not is_bitsandbytes_available():
|
447 |
+
raise ImportError(
|
448 |
+
f"Please install bitsandbytes by running `pip install bitsandbytes` to use the {name} optimizer."
|
449 |
+
)
|
finetrainers/parallel/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
from .accelerate import AccelerateParallelBackend
|
5 |
+
from .ptd import PytorchDTensorParallelBackend
|
6 |
+
from .utils import apply_ddp_ptd, apply_fsdp2_ptd, dist_max, dist_mean
|
7 |
+
|
8 |
+
|
9 |
+
ParallelBackendType = Union[AccelerateParallelBackend, PytorchDTensorParallelBackend]
|
10 |
+
|
11 |
+
|
12 |
+
class ParallelBackendEnum(str, Enum):
|
13 |
+
ACCELERATE = "accelerate"
|
14 |
+
PTD = "ptd"
|
15 |
+
|
16 |
+
|
17 |
+
def get_parallel_backend_cls(backend: ParallelBackendEnum) -> ParallelBackendType:
|
18 |
+
if backend == ParallelBackendEnum.ACCELERATE:
|
19 |
+
return AccelerateParallelBackend
|
20 |
+
if backend == ParallelBackendEnum.PTD:
|
21 |
+
return PytorchDTensorParallelBackend
|
22 |
+
raise ValueError(f"Unknown parallel backend: {backend}")
|
finetrainers/parallel/accelerate.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import pathlib
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from diffusers.utils import is_accelerate_available
|
7 |
+
|
8 |
+
from ..logging import get_logger
|
9 |
+
from ..utils import get_device_info
|
10 |
+
from .base import BaseParallelBackend
|
11 |
+
from .utils import apply_ddp_accelerate
|
12 |
+
|
13 |
+
|
14 |
+
if not is_accelerate_available():
|
15 |
+
raise ImportError(
|
16 |
+
"Please install the accelerate package using `pip install accelerate` to use the AccelerateParallelBackend."
|
17 |
+
)
|
18 |
+
|
19 |
+
from accelerate import Accelerator
|
20 |
+
from accelerate.data_loader import DataLoader
|
21 |
+
from accelerate.utils import (
|
22 |
+
DataLoaderConfiguration,
|
23 |
+
DistributedDataParallelKwargs,
|
24 |
+
InitProcessGroupKwargs,
|
25 |
+
ProjectConfiguration,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
logger = get_logger()
|
30 |
+
_device_type, _device_module = get_device_info()
|
31 |
+
|
32 |
+
|
33 |
+
class AccelerateParallelBackend(BaseParallelBackend):
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
world_size: int,
|
37 |
+
pp_degree: int = 1,
|
38 |
+
dp_degree: int = 1,
|
39 |
+
dp_shards: int = -1,
|
40 |
+
cp_degree: int = 1,
|
41 |
+
tp_degree: int = 1,
|
42 |
+
backend: str = "nccl",
|
43 |
+
timeout: int = 180,
|
44 |
+
logging_dir: Optional[str] = None,
|
45 |
+
output_dir: Optional[str] = None,
|
46 |
+
gradient_accumulation_steps: Optional[int] = None,
|
47 |
+
) -> None:
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
self._world_size = world_size
|
51 |
+
self._pp_degree = pp_degree
|
52 |
+
self._dp_degree = dp_degree
|
53 |
+
self._dp_shards = dp_shards
|
54 |
+
self._cp_degree = cp_degree
|
55 |
+
self._tp_degree = tp_degree
|
56 |
+
self._output_dir = pathlib.Path(output_dir) if output_dir is not None else None
|
57 |
+
self._logging_dir = (
|
58 |
+
self._output_dir / logging_dir if output_dir is not None and logging_dir is not None else None
|
59 |
+
)
|
60 |
+
self._backend = backend
|
61 |
+
self._timeout = timeout
|
62 |
+
self._gradient_accumulation_steps = gradient_accumulation_steps
|
63 |
+
|
64 |
+
if pp_degree > 1 or dp_shards > 1 or cp_degree > 1 or tp_degree > 1:
|
65 |
+
raise ValueError(
|
66 |
+
"AccelerateParallelBackend does not support anything but Distributed Data Parallelism at the moment."
|
67 |
+
)
|
68 |
+
if dp_degree != world_size:
|
69 |
+
raise ValueError("Data parallel degree must be equal to world size.")
|
70 |
+
|
71 |
+
self._accelerator: Accelerator = None
|
72 |
+
self._mesh: torch.distributed.DeviceMesh = None
|
73 |
+
|
74 |
+
def apply_ddp(self, model: torch.nn.Module, *args, **kwargs) -> torch.nn.Module:
|
75 |
+
project_config = None
|
76 |
+
ddp_kwargs = None
|
77 |
+
init_process_group_kwargs = None
|
78 |
+
if self._accelerator is None:
|
79 |
+
project_config = ProjectConfiguration(project_dir=self._output_dir, logging_dir=self._logging_dir)
|
80 |
+
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
|
81 |
+
dataloader_config = DataLoaderConfiguration(
|
82 |
+
split_batches=False, dispatch_batches=False, use_stateful_dataloader=True
|
83 |
+
)
|
84 |
+
init_process_group_kwargs = InitProcessGroupKwargs(
|
85 |
+
backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout)
|
86 |
+
)
|
87 |
+
self._accelerator, model = apply_ddp_accelerate(
|
88 |
+
model,
|
89 |
+
project_config,
|
90 |
+
ddp_kwargs,
|
91 |
+
init_process_group_kwargs,
|
92 |
+
dataloader_config,
|
93 |
+
self._gradient_accumulation_steps,
|
94 |
+
accelerator=self._accelerator,
|
95 |
+
)
|
96 |
+
logger.debug("Applied AccelerateParallel::apply_ddp to model.")
|
97 |
+
return model
|
98 |
+
|
99 |
+
def prepare_dataset(self, dataset: torch.utils.data.IterableDataset) -> torch.utils.data.IterableDataset:
|
100 |
+
logger.debug("AccelerateParallelBackend::prepare_dataset completed!")
|
101 |
+
return dataset
|
102 |
+
|
103 |
+
def prepare_dataloader(
|
104 |
+
self,
|
105 |
+
dataset: torch.utils.data.IterableDataset,
|
106 |
+
batch_size: int = 1,
|
107 |
+
num_workers: int = 0,
|
108 |
+
pin_memory: bool = False,
|
109 |
+
) -> DataLoader:
|
110 |
+
dataloader = torch.utils.data.DataLoader(
|
111 |
+
dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory
|
112 |
+
)
|
113 |
+
dataloader = self._accelerator.prepare_data_loader(dataloader)
|
114 |
+
logger.debug("AccelerateParallelBackend::prepare_dataloader completed!")
|
115 |
+
return dataloader
|
116 |
+
|
117 |
+
def prepare_optimizer(self, optimizer, lr_scheduler):
|
118 |
+
optimizer = self._accelerator.prepare_optimizer(optimizer)
|
119 |
+
lr_scheduler = self._accelerator.prepare_scheduler(lr_scheduler)
|
120 |
+
return optimizer, lr_scheduler
|
121 |
+
|
122 |
+
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
|
123 |
+
def _get_mesh():
|
124 |
+
if name is None:
|
125 |
+
return self._mesh
|
126 |
+
try:
|
127 |
+
return self._mesh[name]
|
128 |
+
except (KeyError, RuntimeError):
|
129 |
+
return self._mesh
|
130 |
+
|
131 |
+
if self._mesh is not None:
|
132 |
+
return _get_mesh()
|
133 |
+
|
134 |
+
mesh_list = [("dp_replicate", self._dp_degree), ("dp_shard", self._dp_shards)]
|
135 |
+
mesh_list = [(name, degree) for name, degree in mesh_list if degree > 1]
|
136 |
+
names = [x[0] for x in mesh_list]
|
137 |
+
degrees = [x[1] for x in mesh_list]
|
138 |
+
mesh = torch.distributed.device_mesh.init_device_mesh(_device_type, mesh_shape=degrees, mesh_dim_names=names)
|
139 |
+
|
140 |
+
dp_mesh_names, dp_cp_mesh_names, dp_shard_cp_mesh_names = [], [], []
|
141 |
+
|
142 |
+
if self.data_replication_enabled:
|
143 |
+
dp_mesh_names.append("dp_replicate")
|
144 |
+
dp_cp_mesh_names.append("dp_replicate")
|
145 |
+
if self.data_sharding_enabled:
|
146 |
+
dp_mesh_names.append("dp_shard")
|
147 |
+
dp_cp_mesh_names.append("dp_shard")
|
148 |
+
dp_shard_cp_mesh_names.append("dp_shard")
|
149 |
+
if self.context_parallel_enabled:
|
150 |
+
dp_cp_mesh_names.append("cp")
|
151 |
+
dp_shard_cp_mesh_names.append("cp")
|
152 |
+
|
153 |
+
if len(dp_mesh_names) > 0:
|
154 |
+
mesh[tuple(dp_mesh_names)]._flatten(mesh_dim_name="dp")
|
155 |
+
if len(dp_cp_mesh_names) > 0:
|
156 |
+
mesh[tuple(dp_cp_mesh_names)]._flatten(mesh_dim_name="dp_cp")
|
157 |
+
if len(dp_shard_cp_mesh_names) > 0:
|
158 |
+
mesh[tuple(dp_shard_cp_mesh_names)]._flatten(mesh_dim_name="dp_shard_cp")
|
159 |
+
|
160 |
+
logger.debug(f"Device mesh: {mesh}")
|
161 |
+
self._mesh = mesh
|
162 |
+
return _get_mesh()
|
163 |
+
|
164 |
+
@property
|
165 |
+
def world_size(self):
|
166 |
+
return self._accelerator.num_processes
|
167 |
+
|
168 |
+
@property
|
169 |
+
def rank(self):
|
170 |
+
return self._accelerator.process_index
|
171 |
+
|
172 |
+
@property
|
173 |
+
def local_rank(self):
|
174 |
+
return self._accelerator.local_process_index
|
175 |
+
|
176 |
+
@property
|
177 |
+
def is_main_process(self):
|
178 |
+
r"""Returns `True` if the current process is the main process on the master node."""
|
179 |
+
return self._accelerator.is_main_process
|
180 |
+
|
181 |
+
@property
|
182 |
+
def is_local_main_process(self):
|
183 |
+
r"""Returns `True` if the current process is the main process on local node."""
|
184 |
+
return self._accelerator.is_local_main_process
|
185 |
+
|
186 |
+
@property
|
187 |
+
def device(self):
|
188 |
+
return self._accelerator.device
|
189 |
+
|
190 |
+
def wait_for_everyone(self):
|
191 |
+
self._accelerator.wait_for_everyone()
|
192 |
+
|
193 |
+
def destroy(self):
|
194 |
+
self._accelerator.end_training()
|
195 |
+
|
196 |
+
@property
|
197 |
+
def pipeline_parallel_enabled(self):
|
198 |
+
return self._pp_degree > 1
|
199 |
+
|
200 |
+
@property
|
201 |
+
def data_parallel_enabled(self):
|
202 |
+
return self._dp_degree > 1 or self._dp_shards > 1
|
203 |
+
|
204 |
+
@property
|
205 |
+
def data_replication_enabled(self):
|
206 |
+
return self._dp_degree > 1
|
207 |
+
|
208 |
+
@property
|
209 |
+
def data_sharding_enabled(self):
|
210 |
+
return self._dp_shards > 1
|
211 |
+
|
212 |
+
@property
|
213 |
+
def context_parallel_enabled(self):
|
214 |
+
return self._cp_degree > 1
|
215 |
+
|
216 |
+
@property
|
217 |
+
def tensor_parallel_enabled(self):
|
218 |
+
return self._tp_degree > 1
|
finetrainers/parallel/base.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
from typing import Any, Dict, List, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from ..trackers import TrackerType, initialize_trackers
|
7 |
+
|
8 |
+
|
9 |
+
class BaseParallelBackend:
|
10 |
+
r"""
|
11 |
+
Base class that contains properties and methods that should be implemented by different parallel backends.
|
12 |
+
"""
|
13 |
+
|
14 |
+
def apply_ddp(self, *args, **kwargs) -> torch.nn.Module:
|
15 |
+
raise NotImplementedError("Method `apply_ddp` must be implemented by subclass.")
|
16 |
+
|
17 |
+
def prepare_dataset(self, *args, **kwargs) -> Any:
|
18 |
+
raise NotImplementedError("Method `prepare_dataset` must be implemented by subclass.")
|
19 |
+
|
20 |
+
def prepare_dataloader(self, *args, **kwargs) -> Any:
|
21 |
+
raise NotImplementedError("Method `prepare_dataloader` must be implemented by subclass.")
|
22 |
+
|
23 |
+
def prepare_optimizer(self, *args, **kwargs) -> Any:
|
24 |
+
raise NotImplementedError("Method `prepare_optimizer` must be implemented by subclass.")
|
25 |
+
|
26 |
+
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
|
27 |
+
raise NotImplementedError("Method `get_mesh` must be implemented by subclass.")
|
28 |
+
|
29 |
+
def initialize_trackers(
|
30 |
+
self, trackers: List[str], experiment_name: str, config: Dict[str, Any], log_dir: str
|
31 |
+
) -> TrackerType:
|
32 |
+
self.tracker = None
|
33 |
+
if self.is_main_process:
|
34 |
+
self.tracker = initialize_trackers(trackers, experiment_name, config, log_dir)
|
35 |
+
|
36 |
+
def log(self, metrics: Dict[str, Any], step: int) -> None:
|
37 |
+
if self.is_main_process:
|
38 |
+
self.tracker.log(metrics, step)
|
39 |
+
|
40 |
+
def wait_for_everyone(self):
|
41 |
+
raise NotImplementedError("Method `wait_for_everyone` must be implemented by subclass.")
|
42 |
+
|
43 |
+
@contextmanager
|
44 |
+
def main_process_first(self):
|
45 |
+
raise NotImplementedError("Method `main_process_first` must be implemented by subclass.")
|
46 |
+
|
47 |
+
def destroy(self):
|
48 |
+
raise NotImplementedError("Method `destroy` must be implemented by subclass.")
|
49 |
+
|
50 |
+
@property
|
51 |
+
def world_size(self):
|
52 |
+
raise NotImplementedError("Method `world_size` must be implemented by subclass.")
|
53 |
+
|
54 |
+
@property
|
55 |
+
def rank(self):
|
56 |
+
raise NotImplementedError("Method `rank` must be implemented by subclass.")
|
57 |
+
|
58 |
+
@property
|
59 |
+
def local_rank(self):
|
60 |
+
raise NotImplementedError("Method `local_rank` must be implemented by subclass.")
|
61 |
+
|
62 |
+
@property
|
63 |
+
def is_main_process(self):
|
64 |
+
raise NotImplementedError("Method `is_main_process` must be implemented by subclass.")
|
65 |
+
|
66 |
+
@property
|
67 |
+
def is_local_main_process(self):
|
68 |
+
raise NotImplementedError("Method `is_local_main_process` must be implemented by subclass.")
|
69 |
+
|
70 |
+
@property
|
71 |
+
def device(self):
|
72 |
+
raise NotImplementedError("Method `device` must be implemented by subclass.")
|
73 |
+
|
74 |
+
@property
|
75 |
+
def pipeline_parallel_enabled(self):
|
76 |
+
raise NotImplementedError("Property `pipeline_parallel_enabled` must be implemented by subclass.")
|
77 |
+
|
78 |
+
@property
|
79 |
+
def data_parallel_enabled(self):
|
80 |
+
raise NotImplementedError("Property `data_parallel_enabled` must be implemented by subclass.")
|
81 |
+
|
82 |
+
@property
|
83 |
+
def data_replication_enabled(self):
|
84 |
+
raise NotImplementedError("Property `data_replication_enabled` must be implemented by subclass.")
|
85 |
+
|
86 |
+
@property
|
87 |
+
def data_sharding_enabled(self):
|
88 |
+
raise NotImplementedError("Property `data_sharding_enabled` must be implemented by subclass.")
|
89 |
+
|
90 |
+
@property
|
91 |
+
def context_parallel_enabled(self):
|
92 |
+
raise NotImplementedError("Property `context_parallel_enabled` must be implemented by subclass.")
|
93 |
+
|
94 |
+
@property
|
95 |
+
def tensor_parallel_enabled(self):
|
96 |
+
raise NotImplementedError("Property `tensor_parallel_enabled` must be implemented by subclass.")
|
finetrainers/parallel/deepspeed.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base import BaseParallelBackend
|
2 |
+
|
3 |
+
|
4 |
+
class DeepspeedParallelBackend(BaseParallelBackend):
|
5 |
+
def __init__(self):
|
6 |
+
# TODO(aryan)
|
7 |
+
raise NotImplementedError("DeepspeedParallelBackend is not implemented yet.")
|
finetrainers/parallel/ptd.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import datasets.distributed
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from ..data import DPDataLoader
|
10 |
+
from ..logging import get_logger
|
11 |
+
from ..utils import get_device_info
|
12 |
+
from .base import BaseParallelBackend
|
13 |
+
from .utils import apply_ddp_ptd
|
14 |
+
|
15 |
+
|
16 |
+
_device_type, _device_module = get_device_info()
|
17 |
+
logger = get_logger()
|
18 |
+
|
19 |
+
|
20 |
+
class PytorchDTensorParallelBackend(BaseParallelBackend):
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
world_size: int,
|
24 |
+
pp_degree: int = 1,
|
25 |
+
dp_degree: int = 1,
|
26 |
+
dp_shards: int = -1,
|
27 |
+
cp_degree: int = 1,
|
28 |
+
tp_degree: int = 1,
|
29 |
+
backend: str = "nccl",
|
30 |
+
timeout: int = 180,
|
31 |
+
logging_dir: Optional[str] = None,
|
32 |
+
output_dir: Optional[str] = None,
|
33 |
+
gradient_accumulation_steps: Optional[int] = None,
|
34 |
+
) -> None:
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
self._world_size = world_size
|
38 |
+
self._pp_degree = pp_degree
|
39 |
+
self._dp_degree = dp_degree
|
40 |
+
self._dp_shards = dp_shards
|
41 |
+
self._cp_degree = cp_degree
|
42 |
+
self._tp_degree = tp_degree
|
43 |
+
self._output_dir = pathlib.Path(output_dir) if output_dir is not None else None
|
44 |
+
self._logging_dir = (
|
45 |
+
self._output_dir / logging_dir if output_dir is not None and logging_dir is not None else None
|
46 |
+
)
|
47 |
+
self._backend = backend
|
48 |
+
self._timeout = timeout
|
49 |
+
|
50 |
+
for degree in [pp_degree, dp_degree, dp_shards, cp_degree, tp_degree]:
|
51 |
+
if degree < 1:
|
52 |
+
raise ValueError(f"Parallel degree must be at least 1, got {degree}.")
|
53 |
+
|
54 |
+
if dp_shards * pp_degree * dp_degree * cp_degree * tp_degree != world_size:
|
55 |
+
raise ValueError(
|
56 |
+
f"World size {world_size} must be divisible by the product of all parallel degrees and data parallel shards."
|
57 |
+
)
|
58 |
+
|
59 |
+
torch.distributed.init_process_group(backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout))
|
60 |
+
_device_module.set_device(self.local_rank)
|
61 |
+
|
62 |
+
logger.info(
|
63 |
+
f"Initialized parallel state with:\n"
|
64 |
+
f" - World size: {world_size}\n"
|
65 |
+
f" - Pipeline parallel degree: {pp_degree}\n"
|
66 |
+
f" - Data parallel degree: {dp_degree}\n"
|
67 |
+
f" - Context parallel degree: {cp_degree}\n"
|
68 |
+
f" - Tensor parallel degree: {tp_degree}\n"
|
69 |
+
f" - Data parallel shards: {dp_shards}\n"
|
70 |
+
)
|
71 |
+
|
72 |
+
self._mesh: torch.distributed.DeviceMesh = None
|
73 |
+
|
74 |
+
def apply_ddp(
|
75 |
+
self, model: torch.nn.Module, device_mesh: Optional[torch.distributed.DeviceMesh] = None
|
76 |
+
) -> torch.nn.Module:
|
77 |
+
if device_mesh is None:
|
78 |
+
device_mesh = self.get_mesh()
|
79 |
+
apply_ddp_ptd(model, device_mesh)
|
80 |
+
logger.debug("Applied PytorchDTensorParallel::apply_ddp to model.")
|
81 |
+
return model
|
82 |
+
|
83 |
+
def prepare_dataset(self, dataset: torch.utils.data.IterableDataset) -> torch.utils.data.IterableDataset:
|
84 |
+
dp_mesh = self.get_mesh("dp_replicate")
|
85 |
+
if dp_mesh is None:
|
86 |
+
dp_mesh = self.get_mesh()
|
87 |
+
if self.world_size > 1:
|
88 |
+
dp_local_rank, dp_world_size = dp_mesh.get_local_rank(), dp_mesh.size()
|
89 |
+
else:
|
90 |
+
dp_local_rank, dp_world_size = 0, 1
|
91 |
+
dataset._data = datasets.distributed.split_dataset_by_node(dataset._data, dp_local_rank, dp_world_size)
|
92 |
+
logger.debug("PytorchDTensorParallelBackend::prepare_dataset completed!")
|
93 |
+
return dataset
|
94 |
+
|
95 |
+
def prepare_dataloader(
|
96 |
+
self, dataset: torch.utils.data.IterableDataset, batch_size: int, num_workers: int, pin_memory: bool
|
97 |
+
) -> DPDataLoader:
|
98 |
+
dp_mesh = self.get_mesh("dp_replicate")
|
99 |
+
if dp_mesh is None:
|
100 |
+
dp_mesh = self.get_mesh()
|
101 |
+
if self.world_size > 1:
|
102 |
+
dp_local_rank = dp_mesh.get_local_rank()
|
103 |
+
else:
|
104 |
+
dp_local_rank = 0
|
105 |
+
dataloader = DPDataLoader(dp_local_rank, dataset, batch_size=batch_size, num_workers=num_workers)
|
106 |
+
logger.debug("PytorchDTensorParallelBackend::prepare_dataloader completed!")
|
107 |
+
return dataloader
|
108 |
+
|
109 |
+
def prepare_optimizer(self, optimizer, lr_scheduler):
|
110 |
+
logger.debug("PytorchDTensorParallelBackend::prepare_optimizer completed!")
|
111 |
+
return optimizer, lr_scheduler
|
112 |
+
|
113 |
+
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
|
114 |
+
def _get_mesh():
|
115 |
+
if name is None:
|
116 |
+
return self._mesh
|
117 |
+
try:
|
118 |
+
return self._mesh[name]
|
119 |
+
except (KeyError, RuntimeError):
|
120 |
+
if self._mesh.ndim == 0:
|
121 |
+
return None
|
122 |
+
return self._mesh
|
123 |
+
|
124 |
+
if self._mesh is not None:
|
125 |
+
return _get_mesh()
|
126 |
+
|
127 |
+
mesh_list = [
|
128 |
+
("pp", self._pp_degree),
|
129 |
+
("dp_replicate", self._dp_degree),
|
130 |
+
("dp_shard", self._dp_shards),
|
131 |
+
("cp", self._cp_degree),
|
132 |
+
("tp", self._tp_degree),
|
133 |
+
]
|
134 |
+
mesh_list = [(name, degree) for name, degree in mesh_list if degree > 1]
|
135 |
+
names = [x[0] for x in mesh_list]
|
136 |
+
degrees = [x[1] for x in mesh_list]
|
137 |
+
mesh = torch.distributed.device_mesh.init_device_mesh(_device_type, mesh_shape=degrees, mesh_dim_names=names)
|
138 |
+
|
139 |
+
dp_mesh_names, dp_cp_mesh_names, dp_shard_cp_mesh_names = [], [], []
|
140 |
+
|
141 |
+
if self.data_replication_enabled:
|
142 |
+
dp_mesh_names.append("dp_replicate")
|
143 |
+
dp_cp_mesh_names.append("dp_replicate")
|
144 |
+
if self.data_sharding_enabled:
|
145 |
+
dp_mesh_names.append("dp_shard")
|
146 |
+
dp_cp_mesh_names.append("dp_shard")
|
147 |
+
dp_shard_cp_mesh_names.append("dp_shard")
|
148 |
+
if self.context_parallel_enabled:
|
149 |
+
dp_cp_mesh_names.append("cp")
|
150 |
+
dp_shard_cp_mesh_names.append("cp")
|
151 |
+
|
152 |
+
if len(dp_mesh_names) > 0:
|
153 |
+
mesh[tuple(dp_mesh_names)]._flatten(mesh_dim_name="dp")
|
154 |
+
if len(dp_cp_mesh_names) > 0:
|
155 |
+
mesh[tuple(dp_cp_mesh_names)]._flatten(mesh_dim_name="dp_cp")
|
156 |
+
if len(dp_shard_cp_mesh_names) > 0:
|
157 |
+
mesh[tuple(dp_shard_cp_mesh_names)]._flatten(mesh_dim_name="dp_shard_cp")
|
158 |
+
|
159 |
+
logger.debug(f"Device mesh: {mesh}")
|
160 |
+
self._mesh = mesh
|
161 |
+
return _get_mesh()
|
162 |
+
|
163 |
+
@property
|
164 |
+
def world_size(self):
|
165 |
+
return torch.distributed.get_world_size()
|
166 |
+
|
167 |
+
@property
|
168 |
+
def rank(self):
|
169 |
+
return torch.distributed.get_rank()
|
170 |
+
|
171 |
+
@property
|
172 |
+
def local_rank(self):
|
173 |
+
return int(os.environ.get("LOCAL_RANK", 0))
|
174 |
+
|
175 |
+
@property
|
176 |
+
def is_main_process(self):
|
177 |
+
r"""Returns `True` if the current process is the main process on the master node."""
|
178 |
+
return self.rank == 0
|
179 |
+
|
180 |
+
@property
|
181 |
+
def is_local_main_process(self):
|
182 |
+
r"""Returns `True` if the current process is the main process on local node."""
|
183 |
+
return self.local_rank == 0
|
184 |
+
|
185 |
+
@property
|
186 |
+
def device(self):
|
187 |
+
return torch.device(_device_type, self.local_rank)
|
188 |
+
|
189 |
+
def wait_for_everyone(self):
|
190 |
+
return torch.distributed.barrier()
|
191 |
+
|
192 |
+
# @contextmanager
|
193 |
+
# def main_process_first(self):
|
194 |
+
# if self.is_main_process:
|
195 |
+
# yield
|
196 |
+
# self.wait_for_everyone()
|
197 |
+
# else:
|
198 |
+
# self.wait_for_everyone()
|
199 |
+
# yield
|
200 |
+
|
201 |
+
def destroy(self):
|
202 |
+
if self.is_main_process:
|
203 |
+
self.tracker.finish()
|
204 |
+
return torch.distributed.destroy_process_group()
|
205 |
+
|
206 |
+
@property
|
207 |
+
def pipeline_parallel_enabled(self):
|
208 |
+
return self._pp_degree > 1
|
209 |
+
|
210 |
+
@property
|
211 |
+
def data_parallel_enabled(self):
|
212 |
+
return self._dp_degree > 1 or self._dp_shards > 1
|
213 |
+
|
214 |
+
@property
|
215 |
+
def data_replication_enabled(self):
|
216 |
+
return self._dp_degree > 1
|
217 |
+
|
218 |
+
@property
|
219 |
+
def data_sharding_enabled(self):
|
220 |
+
return self._dp_shards > 1
|
221 |
+
|
222 |
+
@property
|
223 |
+
def context_parallel_enabled(self):
|
224 |
+
return self._cp_degree > 1
|
225 |
+
|
226 |
+
@property
|
227 |
+
def tensor_parallel_enabled(self):
|
228 |
+
return self._tp_degree > 1
|
finetrainers/parallel/utils.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed._functional_collectives as funcol
|
5 |
+
import torch.distributed.tensor
|
6 |
+
from diffusers.utils import is_accelerate_available
|
7 |
+
from torch.distributed._composable.fsdp import CPUOffloadPolicy, MixedPrecisionPolicy, fully_shard
|
8 |
+
from torch.distributed._composable.replicate import replicate
|
9 |
+
|
10 |
+
from ..utils._common import DIFFUSERS_TRANSFORMER_BLOCK_NAMES
|
11 |
+
|
12 |
+
|
13 |
+
if is_accelerate_available():
|
14 |
+
from accelerate import Accelerator
|
15 |
+
from accelerate.utils import (
|
16 |
+
DataLoaderConfiguration,
|
17 |
+
DistributedDataParallelKwargs,
|
18 |
+
InitProcessGroupKwargs,
|
19 |
+
ProjectConfiguration,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
def apply_fsdp2_ptd(
|
24 |
+
model: torch.nn.Module,
|
25 |
+
dp_mesh: torch.distributed.device_mesh.DeviceMesh,
|
26 |
+
param_dtype: torch.dtype,
|
27 |
+
reduce_dtype: torch.dtype,
|
28 |
+
output_dtype: torch.dtype,
|
29 |
+
pp_enabled: bool = False,
|
30 |
+
cpu_offload: bool = False,
|
31 |
+
) -> None:
|
32 |
+
r"""Apply FSDP2 on a model."""
|
33 |
+
mp_policy = MixedPrecisionPolicy(param_dtype, reduce_dtype, output_dtype, cast_forward_inputs=True)
|
34 |
+
fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}
|
35 |
+
|
36 |
+
if cpu_offload:
|
37 |
+
fsdp_config["offload_policy"] = CPUOffloadPolicy(pin_memory=True)
|
38 |
+
|
39 |
+
def apply_fully_shard(blocks):
|
40 |
+
for layer_index, block in enumerate(blocks):
|
41 |
+
if pp_enabled:
|
42 |
+
# For PP, do not reshard after forward to avoid per-microbatch
|
43 |
+
# all-gathers, which can be expensive and non-overlapped
|
44 |
+
reshard_after_forward = False
|
45 |
+
else:
|
46 |
+
# As an optimization, do not reshard after forward for the last
|
47 |
+
# transformer block since FSDP would prefetch it immediately
|
48 |
+
reshard_after_forward = layer_index < len(blocks) - 1
|
49 |
+
fully_shard(block, **fsdp_config, reshard_after_forward=reshard_after_forward)
|
50 |
+
|
51 |
+
for transformer_block_name in DIFFUSERS_TRANSFORMER_BLOCK_NAMES:
|
52 |
+
blocks = getattr(model, transformer_block_name, None)
|
53 |
+
if blocks is not None:
|
54 |
+
apply_fully_shard(blocks)
|
55 |
+
|
56 |
+
fully_shard(model, **fsdp_config, reshard_after_forward=not pp_enabled)
|
57 |
+
|
58 |
+
|
59 |
+
def apply_ddp_accelerate(
|
60 |
+
model: torch.nn.Module,
|
61 |
+
project_config: Optional[ProjectConfiguration] = None,
|
62 |
+
ddp_kwargs: Optional[DistributedDataParallelKwargs] = None,
|
63 |
+
init_process_group_kwargs: Optional[InitProcessGroupKwargs] = None,
|
64 |
+
dataloader_config: Optional[DataLoaderConfiguration] = None,
|
65 |
+
gradient_accumulation_steps: Optional[int] = None,
|
66 |
+
accelerator: Optional[Accelerator] = None,
|
67 |
+
) -> torch.nn.Module:
|
68 |
+
if accelerator is None:
|
69 |
+
accelerator = Accelerator(
|
70 |
+
project_config=project_config,
|
71 |
+
dataloader_config=dataloader_config,
|
72 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
73 |
+
log_with=None,
|
74 |
+
kwargs_handlers=[ddp_kwargs, init_process_group_kwargs],
|
75 |
+
)
|
76 |
+
if torch.backends.mps.is_available():
|
77 |
+
accelerator.native_amp = False
|
78 |
+
accelerator.prepare_model(model)
|
79 |
+
return accelerator, model
|
80 |
+
|
81 |
+
|
82 |
+
def apply_ddp_ptd(model: torch.nn.Module, dp_mesh: torch.distributed.device_mesh.DeviceMesh) -> None:
|
83 |
+
replicate(model, device_mesh=dp_mesh, bucket_cap_mb=100)
|
84 |
+
|
85 |
+
|
86 |
+
def dist_reduce(x: torch.Tensor, reduceOp: str, mesh: torch.distributed.device_mesh.DeviceMesh) -> float:
|
87 |
+
if isinstance(x, torch.distributed.tensor.DTensor):
|
88 |
+
# functional collectives do not support DTensor inputs
|
89 |
+
x = x.full_tensor()
|
90 |
+
assert x.numel() == 1 # required by `.item()`
|
91 |
+
return funcol.all_reduce(x, reduceOp=reduceOp, group=mesh).item()
|
92 |
+
|
93 |
+
|
94 |
+
def dist_max(x: torch.Tensor, mesh: torch.distributed.device_mesh.DeviceMesh) -> float:
|
95 |
+
return dist_reduce(x, reduceOp=torch.distributed.distributed_c10d.ReduceOp.MAX.name, mesh=mesh)
|
96 |
+
|
97 |
+
|
98 |
+
def dist_mean(x: torch.Tensor, mesh: torch.distributed.device_mesh.DeviceMesh) -> float:
|
99 |
+
return dist_reduce(x, reduceOp=torch.distributed.distributed_c10d.ReduceOp.AVG.name, mesh=mesh)
|
finetrainers/patches/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TYPE_CHECKING
|
2 |
+
|
3 |
+
|
4 |
+
if TYPE_CHECKING:
|
5 |
+
from ..args import BaseArgs
|
6 |
+
from ..parallel import ParallelBackendType
|
7 |
+
|
8 |
+
|
9 |
+
def perform_patches_for_training(args: "BaseArgs", parallel_backend: "ParallelBackendType") -> None:
|
10 |
+
# To avoid circular imports
|
11 |
+
from ..config import ModelType, TrainingType
|
12 |
+
|
13 |
+
if args.model_name == ModelType.LTX_VIDEO:
|
14 |
+
from .models.ltx_video import patch
|
15 |
+
|
16 |
+
patch.patch_transformer_forward()
|
17 |
+
if parallel_backend.tensor_parallel_enabled:
|
18 |
+
patch.patch_apply_rotary_emb_for_tp_compatibility()
|
19 |
+
|
20 |
+
if args.training_type == TrainingType.LORA and len(args.layerwise_upcasting_modules) > 0:
|
21 |
+
from dependencies.peft import patch
|
22 |
+
|
23 |
+
patch.patch_peft_move_adapter_to_device_of_base_layer()
|
finetrainers/{patches.py → patches/dependencies/peft/patch.py}
RENAMED
@@ -1,50 +1,25 @@
|
|
1 |
import functools
|
2 |
|
3 |
-
import torch
|
4 |
-
from accelerate.logging import get_logger
|
5 |
from peft.tuners.tuners_utils import BaseTunerLayer
|
6 |
|
7 |
-
from
|
8 |
|
9 |
|
10 |
-
|
11 |
-
logger.setLevel(FINETRAINERS_LOG_LEVEL)
|
12 |
-
|
13 |
-
|
14 |
-
def perform_peft_patches() -> None:
|
15 |
_perform_patch_move_adapter_to_device_of_base_layer()
|
16 |
|
17 |
|
18 |
def _perform_patch_move_adapter_to_device_of_base_layer() -> None:
|
19 |
-
# We don't patch the method for torch.float32 and torch.bfloat16 because it is okay to train with them. If the model weights
|
20 |
-
# are in torch.float16, torch.float8_e4m3fn or torch.float8_e5m2, we need to patch this method to avoid conversion of
|
21 |
-
# LoRA weights from higher precision dtype.
|
22 |
BaseTunerLayer._move_adapter_to_device_of_base_layer = _patched_move_adapter_to_device_of_base_layer(
|
23 |
BaseTunerLayer._move_adapter_to_device_of_base_layer
|
24 |
)
|
25 |
|
26 |
|
27 |
def _patched_move_adapter_to_device_of_base_layer(func) -> None:
|
|
|
28 |
@functools.wraps(func)
|
29 |
def wrapper(self, *args, **kwargs):
|
30 |
with DisableTensorToDtype():
|
31 |
return func(self, *args, **kwargs)
|
32 |
|
33 |
return wrapper
|
34 |
-
|
35 |
-
|
36 |
-
class DisableTensorToDtype:
|
37 |
-
def __enter__(self):
|
38 |
-
self.original_to = torch.Tensor.to
|
39 |
-
|
40 |
-
def modified_to(tensor, *args, **kwargs):
|
41 |
-
# remove dtype from args if present
|
42 |
-
args = [arg if not isinstance(arg, torch.dtype) else None for arg in args]
|
43 |
-
if "dtype" in kwargs:
|
44 |
-
kwargs.pop("dtype")
|
45 |
-
return self.original_to(tensor, *args, **kwargs)
|
46 |
-
|
47 |
-
torch.Tensor.to = modified_to
|
48 |
-
|
49 |
-
def __exit__(self, exc_type, exc_val, exc_tb):
|
50 |
-
torch.Tensor.to = self.original_to
|
|
|
1 |
import functools
|
2 |
|
|
|
|
|
3 |
from peft.tuners.tuners_utils import BaseTunerLayer
|
4 |
|
5 |
+
from ...utils import DisableTensorToDtype
|
6 |
|
7 |
|
8 |
+
def patch_peft_move_adapter_to_device_of_base_layer() -> None:
|
|
|
|
|
|
|
|
|
9 |
_perform_patch_move_adapter_to_device_of_base_layer()
|
10 |
|
11 |
|
12 |
def _perform_patch_move_adapter_to_device_of_base_layer() -> None:
|
|
|
|
|
|
|
13 |
BaseTunerLayer._move_adapter_to_device_of_base_layer = _patched_move_adapter_to_device_of_base_layer(
|
14 |
BaseTunerLayer._move_adapter_to_device_of_base_layer
|
15 |
)
|
16 |
|
17 |
|
18 |
def _patched_move_adapter_to_device_of_base_layer(func) -> None:
|
19 |
+
# TODO(aryan): This is really unsafe probably and may break things. It works for now, but revisit and refactor.
|
20 |
@functools.wraps(func)
|
21 |
def wrapper(self, *args, **kwargs):
|
22 |
with DisableTensorToDtype():
|
23 |
return func(self, *args, **kwargs)
|
24 |
|
25 |
return wrapper
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/patches/models/ltx_video/patch.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Optional, Tuple
|
2 |
+
|
3 |
+
import diffusers
|
4 |
+
import torch
|
5 |
+
from diffusers import LTXVideoTransformer3DModel
|
6 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
7 |
+
from diffusers.utils.import_utils import is_torch_version
|
8 |
+
|
9 |
+
|
10 |
+
def patch_transformer_forward() -> None:
|
11 |
+
_perform_ltx_transformer_forward_patch()
|
12 |
+
|
13 |
+
|
14 |
+
def patch_apply_rotary_emb_for_tp_compatibility() -> None:
|
15 |
+
_perform_ltx_apply_rotary_emb_tensor_parallel_compatibility_patch()
|
16 |
+
|
17 |
+
|
18 |
+
def _perform_ltx_transformer_forward_patch() -> None:
|
19 |
+
LTXVideoTransformer3DModel.forward = _patched_LTXVideoTransformer3Dforward
|
20 |
+
|
21 |
+
|
22 |
+
def _perform_ltx_apply_rotary_emb_tensor_parallel_compatibility_patch() -> None:
|
23 |
+
def apply_rotary_emb(x, freqs):
|
24 |
+
cos, sin = freqs
|
25 |
+
# ======== THIS IS CHANGED FROM THE ORIGINAL IMPLEMENTATION ========
|
26 |
+
# The change is made due to unsupported DTensor operation aten.ops.unbind
|
27 |
+
# FIXME: Once aten.ops.unbind support lands, this will no longer be required
|
28 |
+
# x_real, x_imag = x.unflatten(2, (-1, 2)).unbind(-1) # [B, S, H, D // 2]
|
29 |
+
x_real, x_imag = x.unflatten(2, (-1, 2)).chunk(2, dim=-1) # [B, S, H, D // 2]
|
30 |
+
# ==================================================================
|
31 |
+
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(2)
|
32 |
+
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
33 |
+
return out
|
34 |
+
|
35 |
+
diffusers.models.transformers.transformer_ltx.apply_rotary_emb = apply_rotary_emb
|
36 |
+
|
37 |
+
|
38 |
+
def _patched_LTXVideoTransformer3Dforward(
|
39 |
+
self,
|
40 |
+
hidden_states: torch.Tensor,
|
41 |
+
encoder_hidden_states: torch.Tensor,
|
42 |
+
timestep: torch.LongTensor,
|
43 |
+
encoder_attention_mask: torch.Tensor,
|
44 |
+
num_frames: int,
|
45 |
+
height: int,
|
46 |
+
width: int,
|
47 |
+
rope_interpolation_scale: Optional[Tuple[float, float, float]] = None,
|
48 |
+
return_dict: bool = True,
|
49 |
+
*args,
|
50 |
+
**kwargs,
|
51 |
+
) -> torch.Tensor:
|
52 |
+
image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale)
|
53 |
+
|
54 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
55 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
56 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
57 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
58 |
+
|
59 |
+
batch_size = hidden_states.size(0)
|
60 |
+
|
61 |
+
# ===== This is modified compared to Diffusers =====
|
62 |
+
# This is done because the Diffusers pipeline will pass in a 1D tensor for timestep
|
63 |
+
if timestep.ndim == 1:
|
64 |
+
timestep = timestep.view(-1, 1, 1).expand(-1, *hidden_states.shape[1:-1], -1)
|
65 |
+
# ==================================================
|
66 |
+
|
67 |
+
temb, embedded_timestep = self.time_embed(
|
68 |
+
timestep.flatten(),
|
69 |
+
batch_size=batch_size,
|
70 |
+
hidden_dtype=hidden_states.dtype,
|
71 |
+
)
|
72 |
+
|
73 |
+
# ===== This is modified compared to Diffusers =====
|
74 |
+
# temb = temb.view(batch_size, -1, temb.size(-1))
|
75 |
+
# embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1))
|
76 |
+
# ==================================================
|
77 |
+
# This is done to make it possible to use per-token timestep embedding
|
78 |
+
temb = temb.view(batch_size, *hidden_states.shape[1:-1], temb.size(-1))
|
79 |
+
embedded_timestep = embedded_timestep.view(batch_size, *hidden_states.shape[1:-1], embedded_timestep.size(-1))
|
80 |
+
# ==================================================
|
81 |
+
|
82 |
+
hidden_states = self.proj_in(hidden_states)
|
83 |
+
|
84 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
85 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.size(-1))
|
86 |
+
|
87 |
+
for block in self.transformer_blocks:
|
88 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
89 |
+
|
90 |
+
def create_custom_forward(module, return_dict=None):
|
91 |
+
def custom_forward(*inputs):
|
92 |
+
if return_dict is not None:
|
93 |
+
return module(*inputs, return_dict=return_dict)
|
94 |
+
else:
|
95 |
+
return module(*inputs)
|
96 |
+
|
97 |
+
return custom_forward
|
98 |
+
|
99 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
100 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
101 |
+
create_custom_forward(block),
|
102 |
+
hidden_states,
|
103 |
+
encoder_hidden_states,
|
104 |
+
temb,
|
105 |
+
image_rotary_emb,
|
106 |
+
encoder_attention_mask,
|
107 |
+
**ckpt_kwargs,
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
hidden_states = block(
|
111 |
+
hidden_states=hidden_states,
|
112 |
+
encoder_hidden_states=encoder_hidden_states,
|
113 |
+
temb=temb,
|
114 |
+
image_rotary_emb=image_rotary_emb,
|
115 |
+
encoder_attention_mask=encoder_attention_mask,
|
116 |
+
)
|
117 |
+
|
118 |
+
scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
|
119 |
+
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
|
120 |
+
|
121 |
+
hidden_states = self.norm_out(hidden_states)
|
122 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
123 |
+
output = self.proj_out(hidden_states)
|
124 |
+
|
125 |
+
if not return_dict:
|
126 |
+
return (output,)
|
127 |
+
return Transformer2DModelOutput(sample=output)
|
finetrainers/patches/utils.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class DisableTensorToDtype:
|
5 |
+
def __enter__(self):
|
6 |
+
self.original_to = torch.Tensor.to
|
7 |
+
|
8 |
+
def modified_to(tensor, *args, **kwargs):
|
9 |
+
# remove dtype from args if present
|
10 |
+
args = [arg if not isinstance(arg, torch.dtype) else None for arg in args]
|
11 |
+
if "dtype" in kwargs:
|
12 |
+
kwargs.pop("dtype")
|
13 |
+
return self.original_to(tensor, *args, **kwargs)
|
14 |
+
|
15 |
+
torch.Tensor.to = modified_to
|
16 |
+
|
17 |
+
def __exit__(self, *args, **kwargs):
|
18 |
+
torch.Tensor.to = self.original_to
|