VideoModelStudio / vms /utils /training_log_parser.py
jbilcke-hf's picture
jbilcke-hf HF staff
improve doc + investigate log parsing issues
910a853
import re
import logging
from dataclasses import dataclass
from typing import Optional, Dict, Any, List
from datetime import datetime, timedelta
logger = logging.getLogger(__name__)
@dataclass
class TrainingState:
"""Represents the current state of training"""
status: str = "idle" # idle, initializing, training, completed, error, stopped
current_step: int = 0
total_steps: int = 0
current_epoch: int = 0
total_epochs: int = 0
step_loss: float = 0.0
learning_rate: float = 0.0
grad_norm: float = 0.0
memory_allocated: float = 0.0
memory_reserved: float = 0.0
start_time: Optional[datetime] = None
last_step_time: Optional[datetime] = None
estimated_remaining: Optional[str] = None
error_message: Optional[str] = None
initialization_stage: str = ""
download_progress: float = 0.0
elapsed_time: str = "0:00:00"
# New fields for current task tracking
current_task: str = ""
current_task_progress: str = ""
task_progress_percentage: float = 0.0
task_items_processed: int = 0
task_total_items: int = 0
task_time_remaining: str = ""
task_speed: str = ""
# Store recent progress lines for task display
recent_progress_lines: List[str] = None
def __post_init__(self):
if self.recent_progress_lines is None:
self.recent_progress_lines = []
def calculate_progress(self) -> float:
"""Calculate overall progress as percentage"""
if self.total_steps == 0:
return 0.0
return (self.current_step / self.total_steps) * 100
def to_dict(self) -> Dict[str, Any]:
"""Convert state to dictionary for UI updates"""
# Use the stored elapsed time directly if it exists
elapsed = self.elapsed_time
# Use precomputed remaining time from logs if available
remaining = str(self.estimated_remaining) if self.estimated_remaining else "calculating..."
result = {
"status": self.status,
"progress": f"{self.calculate_progress():.1f}%",
"current_step": self.current_step,
"total_steps": self.total_steps,
"current_epoch": self.current_epoch,
"total_epochs": self.total_epochs,
"step_loss": f"{self.step_loss:.4f}",
"learning_rate": f"{self.learning_rate:.2e}",
"grad_norm": f"{self.grad_norm:.4f}",
"memory": f"{self.memory_allocated:.1f}GB allocated, {self.memory_reserved:.1f}GB reserved",
"elapsed": elapsed,
"remaining": remaining,
"initialization_stage": self.initialization_stage,
"error_message": self.error_message,
"download_progress": self.download_progress
}
# Add current task information
result["current_task"] = self.get_task_display()
return result
def get_task_display(self) -> str:
"""Generate a formatted display of the current task"""
if not self.recent_progress_lines:
if self.status == "training":
return "Training in progress..."
return ""
# Get the most recent progress line
latest_line = self.recent_progress_lines[-1]
# For downloading shards or loading checkpoint shards
if "Downloading shards" in latest_line or "Loading checkpoint shards" in latest_line:
# Extract just the progress bar part
match = re.search(r'(\d+%\|[▏▎▍▌▋▊▉█\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Extract the remaining information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
task_type = "Downloading shards" if "Downloading shards" in latest_line else "Loading checkpoint shards"
return f"{task_type}:\n{progress_bar}\n{time_info}"
# For "Rank 0" progress (typically training steps)
elif "Rank 0:" in latest_line:
match = re.search(r'Rank 0:\s+(\d+%\|[▏▎▍▌▋▊▉█\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Extract step information
step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
step_info = step_match.group(1) if step_match else ""
# Extract time information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
return f"Training iteration:\n{progress_bar} {step_info}\n{time_info}"
# For Filling buffer progress
elif "Filling buffer" in latest_line:
match = re.search(r'(\d+%\|[▏▎▍▌▋▊▉█\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Extract step information
step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
step_info = step_match.group(1) if step_match else ""
# Extract time information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
return f"Filling buffer from data iterator:\n{progress_bar} {step_info}\n{time_info}"
# For other progress lines
elif "%" in latest_line and "|" in latest_line:
# Generic progress bar pattern
match = re.search(r'(\d+%\|[▏▎▍▌▋▊▉█\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Try to extract step information
step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
step_info = step_match.group(1) if step_match else ""
# Try to extract time information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
task_prefix = "Processing:"
# Try to determine task type
if "Training" in latest_line:
task_prefix = "Training:"
elif "Precomputing" in latest_line:
task_prefix = "Precomputing:"
return f"{task_prefix}\n{progress_bar} {step_info}\n{time_info}"
# If we couldn't parse it properly, just return the line
return latest_line.strip()
class TrainingLogParser:
"""Parser for training logs with state management"""
def __init__(self):
self.state = TrainingState()
self._last_update_time = None
# Maximum number of recent progress lines to store
self.max_recent_lines = 5
def reset(self):
"""Reset parser state"""
self.state = TrainingState()
self._last_update_time = None
def get_current_task_display(self) -> str:
"""Get the formatted current task display"""
return self.state.get_task_display()
def parse_line(self, line: str) -> Optional[Dict[str, Any]]:
"""Parse a single log line and update state"""
try:
# Check if this is a progress line
if any(pattern in line for pattern in ["Downloading shards:", "Loading checkpoint shards:", "Rank 0:", "Filling buffer", "|"]) and "%" in line:
# Add to recent progress lines, maintaining order and max length
self.state.recent_progress_lines.append(line)
if len(self.state.recent_progress_lines) > self.max_recent_lines:
self.state.recent_progress_lines.pop(0)
# Parse the Training steps line for additional information
if "Training steps:" in line:
# Set status to training if we see this
self.state.status = "training"
if not self.state.start_time:
self.state.start_time = datetime.now()
# Extract step numbers from the format: Training steps: 4%|▍ | 44/1000 [41:57<17:22:32, 65.43s/it]
steps_match = re.search(r"\|\s*(\d+)/(\d+)", line)
if steps_match:
self.state.current_step = int(steps_match.group(1))
self.state.total_steps = int(steps_match.group(2))
# Extract elapsed time - Format example: [41:57<17:22:32, 65.43s/it]
elapsed_match = re.search(r"\[(\d+:\d+)(:\d+)?<", line)
if elapsed_match:
if elapsed_match.group(2): # has hours:minutes:seconds format
self.state.elapsed_time = elapsed_match.group(1) + elapsed_match.group(2)
else: # has minutes:seconds format
self.state.elapsed_time = elapsed_match.group(1)
# Extract remaining time - Format example: [41:57<17:22:32, 65.43s/it]
remaining_match = re.search(r"<([\d:]+)", line)
if remaining_match:
self.state.estimated_remaining = remaining_match.group(1)
# Extract metrics with different patterns
# Pattern 1: grad_norm=0.113, global_avg_loss=0.15, global_max_loss=0.15
grad_norm_match = re.search(r"grad_norm=([0-9.e-]+)", line)
if grad_norm_match:
self.state.grad_norm = float(grad_norm_match.group(1))
# Try global_avg_loss as the main loss metric
loss_match = re.search(r"global_avg_loss=([0-9.e-]+)", line)
if loss_match:
self.state.step_loss = float(loss_match.group(1))
elif "step_loss=" in line:
# Fall back to step_loss if global_avg_loss not found
loss_match = re.search(r"step_loss=([0-9.e-]+)", line)
if loss_match:
self.state.step_loss = float(loss_match.group(1))
# Extract learning rate if available
lr_match = re.search(r"lr=([0-9.e-]+)", line)
if lr_match:
self.state.learning_rate = float(lr_match.group(1))
# Update last processing time
self.state.last_step_time = datetime.now()
# Return updated state
return self.state.to_dict()
# Parse "Starting training step" lines to extract step/total info if not already parsed
step_match = re.search(r"Starting training step \((\d+)/(\d+)\)", line)
if step_match:
current_step = int(step_match.group(1))
total_steps = int(step_match.group(2))
# Only update if we don't already have a value or if this is more recent
if self.state.total_steps == 0 or current_step > self.state.current_step:
self.state.current_step = current_step
self.state.total_steps = total_steps
self.state.status = "training" # Ensure status is set to training
logger.info(f"Updated training step: {current_step}/{total_steps}")
return self.state.to_dict()
if ("Started training" in line) or ("Starting training" in line):
self.state.status = "training"
if not self.state.start_time:
self.state.start_time = datetime.now()
return self.state.to_dict()
# Epoch information
epoch_match = re.search(r"Starting epoch \((\d+)/(\d+)\)", line)
if epoch_match:
self.state.current_epoch = int(epoch_match.group(1))
self.state.total_epochs = int(epoch_match.group(2))
logger.info(f"Updated epoch: {self.state.current_epoch}/{self.state.total_epochs}")
return self.state.to_dict()
# Initialization stages
if "Initializing" in line:
self.state.status = "initializing"
self.state.initialization_stage = line.split("Initializing")[1].strip()
logger.info(f"Initialization stage: {self.state.initialization_stage}")
return self.state.to_dict()
# Memory usage
if "memory_allocated" in line:
mem_match = re.search(r'"memory_allocated":\s*([0-9.]+)', line)
if mem_match:
self.state.memory_allocated = float(mem_match.group(1))
reserved_match = re.search(r'"memory_reserved":\s*([0-9.]+)', line)
if reserved_match:
self.state.memory_reserved = float(reserved_match.group(1))
logger.info(f"Updated memory: allocated={self.state.memory_allocated}GB, reserved={self.state.memory_reserved}GB")
return self.state.to_dict()
# Completion states
if "Training completed successfully" in line:
self.state.status = "completed"
# Store final elapsed time
self.state.last_step_time = datetime.now()
logger.info("Training completed")
return self.state.to_dict()
if any(x in line for x in ["Training process stopped", "Training stopped"]):
self.state.status = "stopped"
# Store final elapsed time
self.state.last_step_time = datetime.now()
logger.info("Training stopped")
return self.state.to_dict()
if "Error during training:" in line:
self.state.status = "error"
self.state.error_message = line.split("Error during training:")[1].strip()
logger.info(f"Training error: {self.state.error_message}")
return self.state.to_dict()
except Exception as e:
logger.error(f"Error parsing line: {str(e)}")
return None