Spaces:
Running
Running
import os | |
import sys | |
import json | |
import time | |
import shutil | |
import gradio as gr | |
from pathlib import Path | |
from datetime import datetime | |
import subprocess | |
import signal | |
import psutil | |
import tempfile | |
import zipfile | |
import logging | |
import traceback | |
import threading | |
import fcntl | |
import select | |
from typing import Any, Optional, Dict, List, Union, Tuple | |
from huggingface_hub import upload_folder, create_repo | |
from vms.config import ( | |
TrainingConfig, TRAINING_PRESETS, LOG_FILE_PATH, TRAINING_VIDEOS_PATH, | |
STORAGE_PATH, TRAINING_PATH, MODEL_PATH, OUTPUT_PATH, HF_API_TOKEN, | |
MODEL_TYPES, TRAINING_TYPES, MODEL_VERSIONS, | |
DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
DEFAULT_BATCH_SIZE, DEFAULT_CAPTION_DROPOUT_P, | |
DEFAULT_LEARNING_RATE, | |
DEFAULT_LORA_RANK, DEFAULT_LORA_ALPHA, | |
DEFAULT_LORA_RANK_STR, DEFAULT_LORA_ALPHA_STR, | |
DEFAULT_SEED, DEFAULT_RESHAPE_MODE, | |
DEFAULT_REMOVE_COMMON_LLM_CAPTION_PREFIXES, | |
DEFAULT_DATASET_TYPE, DEFAULT_PROMPT_PREFIX, | |
DEFAULT_MIXED_PRECISION, DEFAULT_TRAINING_TYPE, | |
DEFAULT_NUM_GPUS, | |
DEFAULT_MAX_GPUS, | |
DEFAULT_PRECOMPUTATION_ITEMS, | |
DEFAULT_NB_TRAINING_STEPS, | |
DEFAULT_NB_LR_WARMUP_STEPS, | |
DEFAULT_AUTO_RESUME | |
) | |
from vms.utils import ( | |
get_available_gpu_count, | |
make_archive, | |
parse_training_log, | |
is_image_file, | |
is_video_file, | |
prepare_finetrainers_dataset, | |
copy_files_to_training_dir | |
) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
class TrainingService: | |
def __init__(self, app=None): | |
# Store reference to app | |
self.app = app | |
# State and log files | |
self.session_file = OUTPUT_PATH / "session.json" | |
self.status_file = OUTPUT_PATH / "status.json" | |
self.pid_file = OUTPUT_PATH / "training.pid" | |
self.log_file = OUTPUT_PATH / "training.log" | |
self.file_lock = threading.Lock() | |
self.file_handler = None | |
self.setup_logging() | |
self.ensure_valid_ui_state_file() | |
logger.info("Training service initialized") | |
def setup_logging(self): | |
"""Set up logging with proper handler management""" | |
global logger | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
# Remove any existing handlers to avoid duplicates | |
logger.handlers.clear() | |
# Add stdout handler | |
stdout_handler = logging.StreamHandler(sys.stdout) | |
stdout_handler.setFormatter(logging.Formatter( | |
'%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
)) | |
logger.addHandler(stdout_handler) | |
# Add file handler if log file is accessible | |
try: | |
# Close existing file handler if it exists | |
if self.file_handler: | |
self.file_handler.close() | |
logger.removeHandler(self.file_handler) | |
self.file_handler = logging.FileHandler(str(LOG_FILE_PATH)) | |
self.file_handler.setFormatter(logging.Formatter( | |
'%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
)) | |
logger.addHandler(self.file_handler) | |
except Exception as e: | |
logger.warning(f"Could not set up log file: {e}") | |
def clear_logs(self) -> None: | |
"""Clear log file with proper handler cleanup""" | |
try: | |
# Remove and close the file handler | |
if self.file_handler: | |
logger.removeHandler(self.file_handler) | |
self.file_handler.close() | |
self.file_handler = None | |
# Delete the file if it exists | |
if LOG_FILE_PATH.exists(): | |
LOG_FILE_PATH.unlink() | |
# Recreate logging setup | |
self.setup_logging() | |
self.append_log("Log file cleared and recreated") | |
except Exception as e: | |
logger.error(f"Error clearing logs: {e}") | |
raise | |
def __del__(self): | |
"""Cleanup when the service is destroyed""" | |
if self.file_handler: | |
self.file_handler.close() | |
def save_ui_state(self, values: Dict[str, Any]) -> None: | |
"""Save current UI state to file with validation""" | |
ui_state_file = OUTPUT_PATH / "ui_state.json" | |
# Use a lock to prevent concurrent writes | |
with self.file_lock: | |
# Validate values before saving | |
validated_values = {} | |
default_state = { | |
"model_type": list(MODEL_TYPES.keys())[0], | |
"model_version": "", | |
"training_type": list(TRAINING_TYPES.keys())[0], | |
"lora_rank": DEFAULT_LORA_RANK_STR, | |
"lora_alpha": DEFAULT_LORA_ALPHA_STR, | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"training_preset": list(TRAINING_PRESETS.keys())[0], | |
"num_gpus": DEFAULT_NUM_GPUS, | |
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS, | |
"auto_resume": False | |
} | |
# Copy default values first | |
validated_values = default_state.copy() | |
# Update with provided values, converting types as needed | |
for key, value in values.items(): | |
if key in default_state: | |
if key == "train_steps": | |
try: | |
validated_values[key] = int(value) | |
except (ValueError, TypeError): | |
validated_values[key] = default_state[key] | |
elif key == "batch_size": | |
try: | |
validated_values[key] = int(value) | |
except (ValueError, TypeError): | |
validated_values[key] = default_state[key] | |
elif key == "learning_rate": | |
try: | |
validated_values[key] = float(value) | |
except (ValueError, TypeError): | |
validated_values[key] = default_state[key] | |
elif key == "save_iterations": | |
try: | |
validated_values[key] = int(value) | |
except (ValueError, TypeError): | |
validated_values[key] = default_state[key] | |
elif key == "lora_rank" and value not in ["16", "32", "64", "128", "256", "512", "1024"]: | |
validated_values[key] = default_state[key] | |
elif key == "lora_alpha" and value not in ["16", "32", "64", "128", "256", "512", "1024"]: | |
validated_values[key] = default_state[key] | |
else: | |
validated_values[key] = value | |
try: | |
# First verify we can serialize to JSON | |
json_data = json.dumps(validated_values, indent=2) | |
# Write to the file | |
with open(ui_state_file, 'w') as f: | |
f.write(json_data) | |
logger.debug(f"UI state saved successfully") | |
except Exception as e: | |
logger.error(f"Error saving UI state: {str(e)}") | |
def _backup_and_recreate_ui_state(self, ui_state_file, default_state): | |
"""Backup the corrupted UI state file and create a new one with defaults""" | |
try: | |
# Create a backup with timestamp | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
backup_file = ui_state_file.with_suffix(f'.json.bak_{timestamp}') | |
# Copy the corrupted file | |
shutil.copy2(ui_state_file, backup_file) | |
logger.info(f"Backed up corrupted UI state file to {backup_file}") | |
except Exception as backup_error: | |
logger.error(f"Failed to backup corrupted UI state file: {str(backup_error)}") | |
# Create a new file with default values | |
self.save_ui_state(default_state) | |
logger.info("Created new UI state file with default values after error") | |
def load_ui_state(self) -> Dict[str, Any]: | |
"""Load saved UI state with robust error handling""" | |
ui_state_file = OUTPUT_PATH / "ui_state.json" | |
default_state = { | |
"model_type": list(MODEL_TYPES.keys())[0], | |
"model_version": "", | |
"training_type": list(TRAINING_TYPES.keys())[0], | |
"lora_rank": DEFAULT_LORA_RANK_STR, | |
"lora_alpha": DEFAULT_LORA_ALPHA_STR, | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"training_preset": list(TRAINING_PRESETS.keys())[0], | |
"num_gpus": DEFAULT_NUM_GPUS, | |
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS, | |
"auto_resume": DEFAULT_AUTO_RESUME | |
} | |
# Use lock for reading too to avoid reading during a write | |
with self.file_lock: | |
if not ui_state_file.exists(): | |
logger.info("UI state file does not exist, using default values") | |
return default_state | |
try: | |
# First check if the file is empty | |
file_size = ui_state_file.stat().st_size | |
if file_size == 0: | |
logger.warning("UI state file exists but is empty, using default values") | |
return default_state | |
with open(ui_state_file, 'r') as f: | |
file_content = f.read().strip() | |
if not file_content: | |
logger.warning("UI state file is empty or contains only whitespace, using default values") | |
return default_state | |
try: | |
saved_state = json.loads(file_content) | |
except json.JSONDecodeError as e: | |
logger.error(f"Error parsing UI state JSON: {str(e)}") | |
# Instead of showing the error, recreate the file with defaults | |
self._backup_and_recreate_ui_state(ui_state_file, default_state) | |
return default_state | |
# Clean up model type if it contains " (LoRA)" suffix | |
if "model_type" in saved_state and " (LoRA)" in saved_state["model_type"]: | |
saved_state["model_type"] = saved_state["model_type"].replace(" (LoRA)", "") | |
logger.info(f"Removed (LoRA) suffix from saved model type: {saved_state['model_type']}") | |
# Convert numeric values to appropriate types | |
if "train_steps" in saved_state: | |
try: | |
saved_state["train_steps"] = int(saved_state["train_steps"]) | |
except (ValueError, TypeError): | |
saved_state["train_steps"] = default_state["train_steps"] | |
logger.warning("Invalid train_steps value, using default") | |
if "batch_size" in saved_state: | |
try: | |
saved_state["batch_size"] = int(saved_state["batch_size"]) | |
except (ValueError, TypeError): | |
saved_state["batch_size"] = default_state["batch_size"] | |
logger.warning("Invalid batch_size value, using default") | |
if "learning_rate" in saved_state: | |
try: | |
saved_state["learning_rate"] = float(saved_state["learning_rate"]) | |
except (ValueError, TypeError): | |
saved_state["learning_rate"] = default_state["learning_rate"] | |
logger.warning("Invalid learning_rate value, using default") | |
if "save_iterations" in saved_state: | |
try: | |
saved_state["save_iterations"] = int(saved_state["save_iterations"]) | |
except (ValueError, TypeError): | |
saved_state["save_iterations"] = default_state["save_iterations"] | |
logger.warning("Invalid save_iterations value, using default") | |
# Make sure we have all keys (in case structure changed) | |
merged_state = default_state.copy() | |
merged_state.update({k: v for k, v in saved_state.items() if v is not None}) | |
# Validate model_type is in available choices | |
if merged_state["model_type"] not in MODEL_TYPES: | |
# Try to map from internal name | |
model_found = False | |
for display_name, internal_name in MODEL_TYPES.items(): | |
if internal_name == merged_state["model_type"]: | |
merged_state["model_type"] = display_name | |
model_found = True | |
break | |
# If still not found, use default | |
if not model_found: | |
merged_state["model_type"] = default_state["model_type"] | |
logger.warning(f"Invalid model type in saved state, using default") | |
# Validate model_version is appropriate for model_type | |
if "model_type" in merged_state and "model_version" in merged_state: | |
model_internal_type = MODEL_TYPES.get(merged_state["model_type"]) | |
if model_internal_type: | |
valid_versions = MODEL_VERSIONS.get(model_internal_type, {}).keys() | |
if merged_state["model_version"] not in valid_versions: | |
# Set to default for this model type | |
from vms.ui.project.tabs.train_tab import TrainTab | |
train_tab = TrainTab(None) # Temporary instance just for the helper method | |
merged_state["model_version"] = train_tab.get_default_model_version(saved_state["model_type"]) | |
logger.warning(f"Invalid model version for {merged_state['model_type']}, using default") | |
# Validate training_type is in available choices | |
if merged_state["training_type"] not in TRAINING_TYPES: | |
# Try to map from internal name | |
training_found = False | |
for display_name, internal_name in TRAINING_TYPES.items(): | |
if internal_name == merged_state["training_type"]: | |
merged_state["training_type"] = display_name | |
training_found = True | |
break | |
# If still not found, use default | |
if not training_found: | |
merged_state["training_type"] = default_state["training_type"] | |
logger.warning(f"Invalid training type in saved state, using default") | |
# Validate training_preset is in available choices | |
if merged_state["training_preset"] not in TRAINING_PRESETS: | |
merged_state["training_preset"] = default_state["training_preset"] | |
logger.warning(f"Invalid training preset in saved state, using default") | |
# Validate lora_rank is in allowed values | |
if merged_state.get("lora_rank") not in ["16", "32", "64", "128", "256", "512", "1024"]: | |
merged_state["lora_rank"] = default_state["lora_rank"] | |
logger.warning(f"Invalid lora_rank in saved state, using default") | |
# Validate lora_alpha is in allowed values | |
if merged_state.get("lora_alpha") not in ["16", "32", "64", "128", "256", "512", "1024"]: | |
merged_state["lora_alpha"] = default_state["lora_alpha"] | |
logger.warning(f"Invalid lora_alpha in saved state, using default") | |
return merged_state | |
except Exception as e: | |
logger.error(f"Error loading UI state: {str(e)}") | |
# If anything goes wrong, backup and recreate | |
self._backup_and_recreate_ui_state(ui_state_file, default_state) | |
return default_state | |
def ensure_valid_ui_state_file(self): | |
"""Ensure UI state file exists and is valid JSON""" | |
ui_state_file = OUTPUT_PATH / "ui_state.json" | |
# Default state with all required values | |
default_state = { | |
"model_type": list(MODEL_TYPES.keys())[0], | |
"model_version": "", | |
"training_type": list(TRAINING_TYPES.keys())[0], | |
"lora_rank": DEFAULT_LORA_RANK_STR, | |
"lora_alpha": DEFAULT_LORA_ALPHA_STR, | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"training_preset": list(TRAINING_PRESETS.keys())[0], | |
"num_gpus": DEFAULT_NUM_GPUS, | |
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS, | |
"auto_resume": False | |
} | |
# If file doesn't exist, create it with default values | |
if not ui_state_file.exists(): | |
logger.info("Creating new UI state file with default values") | |
self.save_ui_state(default_state) | |
return | |
# Check if file is valid JSON | |
try: | |
# First check if the file is empty | |
file_size = ui_state_file.stat().st_size | |
if file_size == 0: | |
logger.warning("UI state file exists but is empty, recreating with default values") | |
self.save_ui_state(default_state) | |
return | |
with open(ui_state_file, 'r') as f: | |
file_content = f.read().strip() | |
if not file_content: | |
logger.warning("UI state file is empty or contains only whitespace, recreating with default values") | |
self.save_ui_state(default_state) | |
return | |
# Try to parse the JSON content | |
try: | |
saved_state = json.loads(file_content) | |
logger.debug("UI state file validation successful") | |
except json.JSONDecodeError as e: | |
# JSON parsing failed, backup and recreate | |
logger.error(f"Error parsing UI state JSON: {str(e)}") | |
self._backup_and_recreate_ui_state(ui_state_file, default_state) | |
return | |
except Exception as e: | |
# Any other error (file access, etc) | |
logger.error(f"Error checking UI state file: {str(e)}") | |
self._backup_and_recreate_ui_state(ui_state_file, default_state) | |
return | |
# Modify save_session to also store the UI state at training start | |
def save_session(self, params: Dict) -> None: | |
"""Save training session parameters""" | |
session_data = { | |
"timestamp": datetime.now().isoformat(), | |
"params": params, | |
"status": self.get_status(), | |
# Add UI state at the time training started | |
"initial_ui_state": self.load_ui_state() | |
} | |
with open(self.session_file, 'w') as f: | |
json.dump(session_data, f, indent=2) | |
def load_session(self) -> Optional[Dict]: | |
"""Load saved training session""" | |
if self.session_file.exists(): | |
try: | |
with open(self.session_file, 'r') as f: | |
return json.load(f) | |
except json.JSONDecodeError: | |
return None | |
return None | |
def get_status(self) -> Dict: | |
"""Get current training status""" | |
default_status = {'status': 'stopped', 'message': 'No training in progress'} | |
if not self.status_file.exists(): | |
return default_status | |
try: | |
with open(self.status_file, 'r') as f: | |
status = json.load(f) | |
# Check if process is actually running | |
if self.pid_file.exists(): | |
with open(self.pid_file, 'r') as f: | |
pid = int(f.read().strip()) | |
if not psutil.pid_exists(pid): | |
# Process died unexpectedly | |
if status['status'] == 'training': | |
# Only log this once by checking if we've already updated the status | |
if not hasattr(self, '_process_terminated_logged') or not self._process_terminated_logged: | |
self.append_log("Training process terminated unexpectedly") | |
self._process_terminated_logged = True | |
status['status'] = 'error' | |
status['message'] = 'Training process terminated unexpectedly' | |
# Update the status file to avoid repeated logging | |
with open(self.status_file, 'w') as f: | |
json.dump(status, f, indent=2) | |
else: | |
status['status'] = 'stopped' | |
status['message'] = 'Training process not found' | |
return status | |
except (json.JSONDecodeError, ValueError): | |
return default_status | |
def get_logs(self, max_lines: int = 100) -> str: | |
"""Get training logs with line limit""" | |
if self.log_file.exists(): | |
with open(self.log_file, 'r') as f: | |
lines = f.readlines() | |
return ''.join(lines[-max_lines:]) | |
return "" | |
def append_log(self, message: str) -> None: | |
"""Append message to log file and logger""" | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
with open(self.log_file, 'a') as f: | |
f.write(f"[{timestamp}] {message}\n") | |
logger.info(message) | |
def clear_logs(self) -> None: | |
"""Clear log file""" | |
if self.log_file.exists(): | |
self.log_file.unlink() | |
self.append_log("Log file cleared") | |
def validate_training_config(self, config: TrainingConfig, model_type: str) -> Optional[str]: | |
"""Validate training configuration""" | |
logger.info(f"Validating config for {model_type}") | |
try: | |
# Basic validation | |
if not config.output_dir: | |
return "Output directory not specified" | |
# For the dataset_config validation, we now expect it to be a JSON file | |
dataset_config_path = Path(config.data_root) | |
if not dataset_config_path.exists(): | |
return f"Dataset config file does not exist: {dataset_config_path}" | |
# Check the JSON file is valid | |
try: | |
with open(dataset_config_path, 'r') as f: | |
dataset_json = json.load(f) | |
# Basic validation of the JSON structure | |
if "datasets" not in dataset_json or not isinstance(dataset_json["datasets"], list) or len(dataset_json["datasets"]) == 0: | |
return "Invalid dataset config JSON: missing or empty 'datasets' array" | |
except json.JSONDecodeError: | |
return f"Invalid JSON in dataset config file: {dataset_config_path}" | |
except Exception as e: | |
return f"Error reading dataset config file: {str(e)}" | |
# Check training videos directory exists | |
if not TRAINING_VIDEOS_PATH.exists(): | |
return f"Training videos directory does not exist: {TRAINING_VIDEOS_PATH}" | |
# Validate file counts | |
video_count = len(list(TRAINING_VIDEOS_PATH.glob('*.mp4'))) | |
if video_count == 0: | |
return "No training files found" | |
# Model-specific validation | |
if model_type == "hunyuan_video": | |
if config.batch_size > 2: | |
return "Hunyuan model recommended batch size is 1-2" | |
if not config.gradient_checkpointing: | |
return "Gradient checkpointing is required for Hunyuan model" | |
elif model_type == "ltx_video": | |
if config.batch_size > 4: | |
return "LTX model recommended batch size is 1-4" | |
elif model_type == "wan": | |
if config.batch_size > 4: | |
return "Wan model recommended batch size is 1-4" | |
logger.info(f"Config validation passed with {video_count} training files") | |
return None | |
except Exception as e: | |
logger.error(f"Error during config validation: {str(e)}") | |
return f"Configuration validation failed: {str(e)}" | |
def start_training( | |
self, | |
model_type: str, | |
lora_rank: str, | |
lora_alpha: str, | |
train_steps: int, | |
batch_size: int, | |
learning_rate: float, | |
save_iterations: int, | |
repo_id: str, | |
preset_name: str, | |
training_type: str = DEFAULT_TRAINING_TYPE, | |
model_version: str = "", | |
resume_from_checkpoint: Optional[str] = None, | |
num_gpus: int = DEFAULT_NUM_GPUS, | |
precomputation_items: int = DEFAULT_PRECOMPUTATION_ITEMS, | |
lr_warmup_steps: int = DEFAULT_NB_LR_WARMUP_STEPS, | |
progress: Optional[gr.Progress] = None, | |
) -> Tuple[str, str]: | |
"""Start training with finetrainers""" | |
self.clear_logs() | |
if not model_type: | |
raise ValueError("model_type cannot be empty") | |
if model_type not in MODEL_TYPES.values(): | |
raise ValueError(f"Invalid model_type: {model_type}. Must be one of {list(MODEL_TYPES.values())}") | |
if training_type not in TRAINING_TYPES.values(): | |
raise ValueError(f"Invalid training_type: {training_type}. Must be one of {list(TRAINING_TYPES.values())}") | |
# Check if we're resuming or starting new | |
is_resuming = resume_from_checkpoint is not None | |
log_prefix = "Resuming" if is_resuming else "Initializing" | |
logger.info(f"{log_prefix} training with model_type={model_type}, training_type={training_type}") | |
# Update progress if available | |
#if progress: | |
# progress(0.15, desc="Setting up training configuration") | |
try: | |
# Get absolute paths - FIXED to look in project root instead of within vms directory | |
current_dir = Path(__file__).parent.parent.parent.absolute() # Go up to project root | |
train_script = current_dir / "train.py" | |
if not train_script.exists(): | |
# Try alternative locations | |
alt_locations = [ | |
current_dir.parent / "train.py", # One level up from project root | |
Path("/home/user/app/train.py"), # Absolute path | |
Path("train.py") # Current working directory | |
] | |
for alt_path in alt_locations: | |
if alt_path.exists(): | |
train_script = alt_path | |
logger.info(f"Found train.py at alternative location: {train_script}") | |
break | |
if not train_script.exists(): | |
error_msg = f"Training script not found at {train_script} or any alternative locations" | |
logger.error(error_msg) | |
return error_msg, "Training script not found" | |
# Log paths for debugging | |
logger.info("Current working directory: %s", current_dir) | |
logger.info("Training script path: %s", train_script) | |
logger.info("Training data path: %s", TRAINING_PATH) | |
# Update progress | |
#if progress: | |
# progress(0.2, desc="Preparing training dataset") | |
videos_file, prompts_file = prepare_finetrainers_dataset() | |
if videos_file is None or prompts_file is None: | |
error_msg = "Failed to generate training lists" | |
logger.error(error_msg) | |
return error_msg, "Training preparation failed" | |
video_count = sum(1 for _ in open(videos_file)) | |
logger.info(f"Generated training lists with {video_count} files") | |
if video_count == 0: | |
error_msg = "No training files found" | |
logger.error(error_msg) | |
return error_msg, "No training data available" | |
# Update progress | |
#if progress: | |
# progress(0.25, desc="Creating dataset configuration") | |
# Get preset configuration | |
preset = TRAINING_PRESETS[preset_name] | |
training_buckets = preset["training_buckets"] | |
flow_weighting_scheme = preset.get("flow_weighting_scheme", "none") | |
preset_training_type = preset.get("training_type", "lora") | |
# Get the custom prompt prefix from the tabs | |
custom_prompt_prefix = None | |
if hasattr(self, 'app') and self.app is not None: | |
if hasattr(self.app, 'tabs') and 'caption_tab' in self.app.tabs: | |
if hasattr(self.app.tabs['caption_tab'], 'components') and 'custom_prompt_prefix' in self.app.tabs['caption_tab'].components: | |
# Get the value and clean it | |
prefix = self.app.tabs['caption_tab'].components['custom_prompt_prefix'].value | |
if prefix: | |
# Clean the prefix - remove trailing comma, space or comma+space | |
custom_prompt_prefix = prefix.rstrip(', ') | |
# Create a proper dataset configuration JSON file | |
dataset_config_file = OUTPUT_PATH / "dataset_config.json" | |
# Determine appropriate ID token based on model type and custom prefix | |
id_token = custom_prompt_prefix # Use custom prefix as the primary id_token | |
# Only use default ID tokens if no custom prefix is provided | |
if not id_token: | |
id_token = DEFAULT_PROMPT_PREFIX | |
dataset_config = { | |
"datasets": [ | |
{ | |
"data_root": str(TRAINING_PATH), | |
"dataset_type": DEFAULT_DATASET_TYPE, | |
"id_token": id_token, | |
"video_resolution_buckets": [[f, h, w] for f, h, w in training_buckets], | |
"reshape_mode": DEFAULT_RESHAPE_MODE, | |
"remove_common_llm_caption_prefixes": DEFAULT_REMOVE_COMMON_LLM_CAPTION_PREFIXES, | |
} | |
] | |
} | |
# Write the dataset config to file | |
with open(dataset_config_file, 'w') as f: | |
json.dump(dataset_config, f, indent=2) | |
logger.info(f"Created dataset configuration file at {dataset_config_file}") | |
# Get config for selected model type with preset buckets | |
if model_type == "hunyuan_video": | |
if training_type == "lora": | |
config = TrainingConfig.hunyuan_video_lora( | |
data_path=str(TRAINING_PATH), | |
output_path=str(OUTPUT_PATH), | |
buckets=training_buckets | |
) | |
else: | |
# Hunyuan doesn't support full finetune in our UI yet | |
error_msg = "Full finetune is not supported for Hunyuan Video due to memory limitations" | |
logger.error(error_msg) | |
return error_msg, "Training configuration error" | |
elif model_type == "ltx_video": | |
if training_type == "lora": | |
config = TrainingConfig.ltx_video_lora( | |
data_path=str(TRAINING_PATH), | |
output_path=str(OUTPUT_PATH), | |
buckets=training_buckets | |
) | |
else: | |
config = TrainingConfig.ltx_video_full_finetune( | |
data_path=str(TRAINING_PATH), | |
output_path=str(OUTPUT_PATH), | |
buckets=training_buckets | |
) | |
elif model_type == "wan": | |
if training_type == "lora": | |
config = TrainingConfig.wan_lora( | |
data_path=str(TRAINING_PATH), | |
output_path=str(OUTPUT_PATH), | |
buckets=training_buckets | |
) | |
else: | |
error_msg = "Full finetune for Wan is not yet supported in this UI" | |
logger.error(error_msg) | |
return error_msg, "Training configuration error" | |
else: | |
error_msg = f"Unsupported model type: {model_type}" | |
logger.error(error_msg) | |
return error_msg, "Unsupported model" | |
# Create validation dataset if needed | |
validation_file = None | |
#if enable_validation: # Add a parameter to control this | |
# validation_file = create_validation_config() | |
# if validation_file: | |
# config_args.extend([ | |
# "--validation_dataset_file", str(validation_file), | |
# "--validation_steps", "500" # Set this to a suitable value | |
# ]) | |
# Update with UI parameters | |
config.train_steps = int(train_steps) | |
config.batch_size = int(batch_size) | |
config.lr = float(learning_rate) | |
config.checkpointing_steps = int(save_iterations) | |
config.training_type = training_type | |
config.flow_weighting_scheme = flow_weighting_scheme | |
config.lr_warmup_steps = int(lr_warmup_steps) | |
# Update the NUM_GPUS variable and CUDA_VISIBLE_DEVICES | |
num_gpus = min(num_gpus, get_available_gpu_count()) | |
if num_gpus <= 0: | |
num_gpus = 1 | |
# Generate CUDA_VISIBLE_DEVICES string | |
visible_devices = ",".join([str(i) for i in range(num_gpus)]) | |
config.data_root = str(dataset_config_file) | |
# Update LoRA parameters if using LoRA training type | |
if training_type == "lora": | |
config.lora_rank = int(lora_rank) | |
config.lora_alpha = int(lora_alpha) | |
# Update with resume_from_checkpoint if provided | |
if resume_from_checkpoint: | |
config.resume_from_checkpoint = resume_from_checkpoint | |
self.append_log(f"Resuming from checkpoint: {resume_from_checkpoint} (will use 'latest')") | |
config.resume_from_checkpoint = "latest" | |
# Common settings for both models | |
config.mixed_precision = DEFAULT_MIXED_PRECISION | |
config.seed = DEFAULT_SEED | |
config.gradient_checkpointing = True | |
config.enable_slicing = True | |
config.enable_tiling = True | |
config.caption_dropout_p = DEFAULT_CAPTION_DROPOUT_P | |
config.precomputation_items = precomputation_items | |
validation_error = self.validate_training_config(config, model_type) | |
if validation_error: | |
error_msg = f"Configuration validation failed: {validation_error}" | |
logger.error(error_msg) | |
return "Error: Invalid configuration", error_msg | |
# Convert config to command line arguments for all launcher types | |
config_args = config.to_args_list() | |
logger.debug("Generated args list: %s", config_args) | |
# Use different launch commands based on model type | |
# For Wan models, use torchrun instead of accelerate launch | |
if model_type == "wan": | |
# Configure torchrun parameters | |
torchrun_args = [ | |
"torchrun", | |
"--standalone", | |
"--nproc_per_node=" + str(num_gpus), | |
"--nnodes=1", | |
"--rdzv_backend=c10d", | |
"--rdzv_endpoint=localhost:0", | |
str(train_script) | |
] | |
# Additional args needed for torchrun | |
config_args.extend([ | |
"--parallel_backend", "ptd", | |
"--pp_degree", "1", | |
"--dp_degree", "1", | |
"--dp_shards", "1", | |
"--cp_degree", "1", | |
"--tp_degree", "1" | |
]) | |
# Log the full command for debugging | |
command_str = ' '.join(torchrun_args + config_args) | |
self.append_log(f"Command: {command_str}") | |
logger.info(f"Executing command: {command_str}") | |
launch_args = torchrun_args | |
else: | |
# For other models, use accelerate launch as before | |
# Determine the appropriate accelerate config file based on num_gpus | |
accelerate_config = None | |
if num_gpus == 1: | |
accelerate_config = "accelerate_configs/uncompiled_1.yaml" | |
elif num_gpus == 2: | |
accelerate_config = "accelerate_configs/uncompiled_2.yaml" | |
elif num_gpus == 4: | |
accelerate_config = "accelerate_configs/uncompiled_4.yaml" | |
elif num_gpus == 8: | |
accelerate_config = "accelerate_configs/uncompiled_8.yaml" | |
else: | |
# Default to 1 GPU config if no matching config is found | |
accelerate_config = "accelerate_configs/uncompiled_1.yaml" | |
num_gpus = 1 | |
visible_devices = "0" | |
# Configure accelerate parameters | |
accelerate_args = [ | |
"accelerate", "launch", | |
"--config_file", accelerate_config, | |
"--gpu_ids", visible_devices, | |
"--mixed_precision=bf16", | |
"--num_processes=" + str(num_gpus), | |
"--num_machines=1", | |
"--dynamo_backend=no", | |
str(train_script) | |
] | |
# Log the full command for debugging | |
command_str = ' '.join(accelerate_args + config_args) | |
self.append_log(f"Command: {command_str}") | |
logger.info(f"Executing command: {command_str}") | |
launch_args = accelerate_args | |
# Set environment variables | |
env = os.environ.copy() | |
env["NCCL_P2P_DISABLE"] = "1" | |
env["TORCH_NCCL_ENABLE_MONITORING"] = "0" | |
env["WANDB_MODE"] = "offline" | |
env["HF_API_TOKEN"] = HF_API_TOKEN | |
env["FINETRAINERS_LOG_LEVEL"] = "DEBUG" # Added for better debugging | |
env["CUDA_VISIBLE_DEVICES"] = visible_devices | |
#if progress: | |
# progress(0.9, desc="Launching training process") | |
# Start the training process | |
process = subprocess.Popen( | |
launch_args + config_args, | |
stdout=subprocess.PIPE, | |
stderr=subprocess.PIPE, | |
start_new_session=True, | |
env=env, | |
cwd=str(current_dir), | |
bufsize=1, | |
universal_newlines=True | |
) | |
logger.info(f"Started process with PID: {process.pid}") | |
with open(self.pid_file, 'w') as f: | |
f.write(str(process.pid)) | |
# Save session info including repo_id for later hub upload | |
self.save_session({ | |
"model_type": model_type, | |
"model_version": model_version, | |
"training_type": training_type, | |
"lora_rank": lora_rank, | |
"lora_alpha": lora_alpha, | |
"train_steps": train_steps, | |
"batch_size": batch_size, | |
"learning_rate": learning_rate, | |
"save_iterations": save_iterations, | |
"num_gpus": num_gpus, | |
"precomputation_items": precomputation_items, | |
"lr_warmup_steps": lr_warmup_steps, | |
"repo_id": repo_id, | |
"start_time": datetime.now().isoformat() | |
}) | |
# Update initial training status | |
total_steps = int(train_steps) | |
self.save_status( | |
state='training', | |
step=0, | |
total_steps=total_steps, | |
loss=0.0, | |
message='Training started', | |
repo_id=repo_id, | |
model_type=model_type, | |
training_type=training_type | |
) | |
# Start monitoring process output | |
self._start_log_monitor(process) | |
success_msg = f"Started {training_type} training for {model_type} model" | |
self.append_log(success_msg) | |
logger.info(success_msg) | |
# Final progress update - now we'll track it through the log monitor | |
#if progress: | |
# progress(1.0, desc="Training started successfully") | |
return success_msg, self.get_logs() | |
except Exception as e: | |
error_msg = f"Error {'resuming' if is_resuming else 'starting'} training: {str(e)}" | |
self.append_log(error_msg) | |
logger.exception("Training startup failed") | |
traceback.print_exc() | |
return f"Error {'resuming' if is_resuming else 'starting'} training", error_msg | |
def stop_training(self) -> Tuple[str, str]: | |
"""Stop training process""" | |
if not self.pid_file.exists(): | |
return "No training process found", self.get_logs() | |
try: | |
with open(self.pid_file, 'r') as f: | |
pid = int(f.read().strip()) | |
if psutil.pid_exists(pid): | |
os.killpg(os.getpgid(pid), signal.SIGTERM) | |
if self.pid_file.exists(): | |
self.pid_file.unlink() | |
self.append_log("Training process stopped") | |
self.save_status(state='stopped', message='Training stopped') | |
return "Training stopped successfully", self.get_logs() | |
except Exception as e: | |
error_msg = f"Error stopping training: {str(e)}" | |
self.append_log(error_msg) | |
if self.pid_file.exists(): | |
self.pid_file.unlink() | |
return "Error stopping training", error_msg | |
def pause_training(self) -> Tuple[str, str]: | |
"""Pause training process by sending SIGUSR1""" | |
if not self.is_training_running(): | |
return "No training process found", self.get_logs() | |
try: | |
with open(self.pid_file, 'r') as f: | |
pid = int(f.read().strip()) | |
if psutil.pid_exists(pid): | |
os.kill(pid, signal.SIGUSR1) # Signal to pause | |
self.save_status(state='paused', message='Training paused') | |
self.append_log("Training paused") | |
return "Training paused", self.get_logs() | |
except Exception as e: | |
error_msg = f"Error pausing training: {str(e)}" | |
self.append_log(error_msg) | |
return "Error pausing training", error_msg | |
def resume_training(self) -> Tuple[str, str]: | |
"""Resume training process by sending SIGUSR2""" | |
if not self.is_training_running(): | |
return "No training process found", self.get_logs() | |
try: | |
with open(self.pid_file, 'r') as f: | |
pid = int(f.read().strip()) | |
if psutil.pid_exists(pid): | |
os.kill(pid, signal.SIGUSR2) # Signal to resume | |
self.save_status(state='training', message='Training resumed') | |
self.append_log("Training resumed") | |
return "Training resumed", self.get_logs() | |
except Exception as e: | |
error_msg = f"Error resuming training: {str(e)}" | |
self.append_log(error_msg) | |
return "Error resuming training", error_msg | |
def is_training_running(self) -> bool: | |
"""Check if training is currently running""" | |
if not self.pid_file.exists(): | |
return False | |
try: | |
with open(self.pid_file, 'r') as f: | |
pid = int(f.read().strip()) | |
# Check if process exists AND is a Python process running train.py | |
if psutil.pid_exists(pid): | |
try: | |
process = psutil.Process(pid) | |
cmdline = process.cmdline() | |
# Check if it's a Python process running train.py | |
return any('train.py' in cmd for cmd in cmdline) | |
except (psutil.NoSuchProcess, psutil.AccessDenied): | |
return False | |
return False | |
except: | |
return False | |
def recover_interrupted_training(self) -> Dict[str, Any]: | |
"""Attempt to recover interrupted training | |
Returns: | |
Dict with recovery status and UI updates | |
""" | |
status = self.get_status() | |
ui_updates = {} | |
# Check for any checkpoints, even if status doesn't indicate training | |
checkpoints = list(OUTPUT_PATH.glob("finetrainers_step_*")) | |
has_checkpoints = len(checkpoints) > 0 | |
# If status indicates training but process isn't running, or if we have checkpoints | |
# and no active training process, try to recover | |
if (status.get('status') in ['training', 'paused'] and not self.is_training_running()) or \ | |
(has_checkpoints and not self.is_training_running()): | |
logger.info("Detected interrupted training session or existing checkpoints, attempting to recover...") | |
# Get the latest checkpoint | |
last_session = self.load_session() | |
if not last_session: | |
logger.warning("No session data found for recovery, but will check for checkpoints") | |
# Try to create a default session based on UI state if we have checkpoints | |
if has_checkpoints: | |
ui_state = self.load_ui_state() | |
# Create a default session using UI state values | |
last_session = { | |
"params": { | |
"model_type": MODEL_TYPES.get(ui_state.get("model_type", list(MODEL_TYPES.keys())[0])), | |
"model_version": ui_state.get("model_version", ""), | |
"training_type": TRAINING_TYPES.get(ui_state.get("training_type", list(TRAINING_TYPES.keys())[0])), | |
"lora_rank": ui_state.get("lora_rank", DEFAULT_LORA_RANK_STR), | |
"lora_alpha": ui_state.get("lora_alpha", DEFAULT_LORA_ALPHA_STR), | |
"train_steps": ui_state.get("train_steps", DEFAULT_NB_TRAINING_STEPS), | |
"batch_size": ui_state.get("batch_size", DEFAULT_BATCH_SIZE), | |
"learning_rate": ui_state.get("learning_rate", DEFAULT_LEARNING_RATE), | |
"save_iterations": ui_state.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS), | |
"preset_name": ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]), | |
"repo_id": "", # Default empty repo ID, | |
"auto_resume": ui_state.get("auto_resume", DEFAULT_AUTO_RESUME) | |
} | |
} | |
logger.info("Created default session from UI state for recovery") | |
else: | |
logger.warning(f"No checkpoints found for recovery") | |
# Set buttons for no active training | |
ui_updates = { | |
"start_btn": {"interactive": True, "variant": "primary", "value": "Start Training"}, | |
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}, | |
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}, | |
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False} | |
} | |
return {"status": "idle", "message": "No training in progress", "ui_updates": ui_updates} | |
# Find the latest checkpoint if we have checkpoints | |
latest_checkpoint = None | |
checkpoint_step = 0 | |
if has_checkpoints: | |
# Find the latest checkpoint by step number | |
latest_checkpoint = max(checkpoints, key=lambda x: int(x.name.split("_")[-1])) | |
checkpoint_step = int(latest_checkpoint.name.split("_")[-1]) | |
logger.info(f"Found checkpoint at step {checkpoint_step}") | |
# both options are valid, but imho it is easier to just return "latest" | |
# under the hood Finetrainers will convert ("latest") to (-1) | |
#latest_checkpoint = int(checkpoint_step) | |
latest_checkpoint = "latest" | |
else: | |
logger.warning("No checkpoints found for recovery") | |
# Set buttons for no active training | |
ui_updates = { | |
"start_btn": {"interactive": True, "variant": "primary", "value": "Start Training"}, | |
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}, | |
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}, | |
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False} | |
} | |
return {"status": "error", "message": "No checkpoints found", "ui_updates": ui_updates} | |
# Extract parameters from the saved session (not current UI state) | |
# This ensures we use the original training parameters | |
params = last_session.get('params', {}) | |
# Map internal model type back to display name for UI | |
model_type_internal = params.get('model_type') | |
model_type_display = model_type_internal | |
# Find the display name that maps to our internal model type | |
for display_name, internal_name in MODEL_TYPES.items(): | |
if internal_name == model_type_internal: | |
model_type_display = display_name | |
logger.info(f"Mapped internal model type '{model_type_internal}' to display name '{model_type_display}'") | |
break | |
# Get training type (default to LoRA if not present in saved session) | |
training_type_internal = params.get('training_type', 'lora') | |
training_type_display = next((disp for disp, val in TRAINING_TYPES.items() if val == training_type_internal), list(TRAINING_TYPES.keys())[0]) | |
# Add UI updates to restore the training parameters in the UI | |
# This shows the user what values are being used for the resumed training | |
ui_updates.update({ | |
"model_type": model_type_display, | |
"model_version": params.get('model_version', ''), | |
"training_type": training_type_display, | |
"lora_rank": params.get('lora_rank', DEFAULT_LORA_RANK_STR), | |
"lora_alpha": params.get('lora_alpha', DEFAULT_LORA_ALPHA_STR), | |
"train_steps": params.get('train_steps', DEFAULT_NB_TRAINING_STEPS), | |
"batch_size": params.get('batch_size', DEFAULT_BATCH_SIZE), | |
"learning_rate": params.get('learning_rate', DEFAULT_LEARNING_RATE), | |
"save_iterations": params.get('save_iterations', DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS), | |
"training_preset": params.get('preset_name', list(TRAINING_PRESETS.keys())[0]), | |
"auto_resume": params.get("auto_resume", DEFAULT_AUTO_RESUME) | |
}) | |
# Check if we should auto-recover (immediate restart) | |
ui_state = self.load_ui_state() | |
auto_recover = ui_state.get("auto_resume", DEFAULT_AUTO_RESUME) | |
logger.info(f"Auto-resume is {'enabled' if auto_recover else 'disabled'}") | |
if auto_recover: | |
try: | |
result = self.start_training( | |
model_type=model_type_internal, | |
lora_rank=params.get('lora_rank', DEFAULT_LORA_RANK_STR), | |
lora_alpha=params.get('lora_alpha', DEFAULT_LORA_ALPHA_STR), | |
train_steps=params.get('train_steps', DEFAULT_NB_TRAINING_STEPS), | |
batch_size=params.get('batch_size', DEFAULT_BATCH_SIZE), | |
learning_rate=params.get('learning_rate', DEFAULT_LEARNING_RATE), | |
save_iterations=params.get('save_iterations', DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS), | |
model_version=params.get('model_version', ''), | |
repo_id=params.get('repo_id', ''), | |
preset_name=params.get('preset_name', list(TRAINING_PRESETS.keys())[0]), | |
training_type=training_type_internal, | |
resume_from_checkpoint="latest" | |
) | |
# Set buttons for active training | |
ui_updates.update({ | |
"start_btn": {"interactive": False, "variant": "secondary", "value": "Start over a new training"}, | |
"stop_btn": {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"}, | |
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}, | |
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False} | |
}) | |
return { | |
"status": "recovered", | |
"message": f"Training resumed from checkpoint {checkpoint_step}", | |
"result": result, | |
"ui_updates": ui_updates | |
} | |
except Exception as e: | |
logger.error(f"Failed to auto-resume training: {str(e)}") | |
# Set buttons for manual recovery | |
ui_updates.update({ | |
"start_btn": {"interactive": True, "variant": "primary", "value": "Start over a new training"}, | |
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}, | |
"delete_checkpoints_btn": {"interactive": True, "variant": "stop", "value": "Delete All Checkpoints"}, | |
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False} | |
}) | |
return {"status": "error", "message": f"Failed to auto-resume: {str(e)}", "ui_updates": ui_updates} | |
else: | |
# Set up UI for manual recovery | |
ui_updates.update({ | |
"start_btn": {"interactive": True, "variant": "primary", "value": "Start over a new training"}, | |
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}, | |
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False} | |
}) | |
return {"status": "ready_to_recover", "message": f"Ready to resume from checkpoint {checkpoint_step}", "ui_updates": ui_updates} | |
elif self.is_training_running(): | |
# Process is still running, set buttons accordingly | |
ui_updates = { | |
"start_btn": {"interactive": False, "variant": "secondary", "value": "Start over a new training" if has_checkpoints else "Start Training"}, | |
"stop_btn": {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"}, | |
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}, | |
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"} | |
} | |
return {"status": "running", "message": "Training process is running", "ui_updates": ui_updates} | |
else: | |
# No training process, set buttons to default state | |
button_text = "Start over a new training" if has_checkpoints else "Start Training" | |
ui_updates = { | |
"start_btn": {"interactive": True, "variant": "primary", "value": button_text}, | |
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}, | |
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}, | |
"delete_checkpoints_btn": {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"} | |
} | |
return {"status": "idle", "message": "No training in progress", "ui_updates": ui_updates} | |
def delete_all_checkpoints(self) -> str: | |
"""Delete all checkpoints in the output directory. | |
Returns: | |
Status message | |
""" | |
if self.is_training_running(): | |
return "Cannot delete checkpoints while training is running. Stop training first." | |
try: | |
# Find all checkpoint directories | |
checkpoints = list(OUTPUT_PATH.glob("finetrainers_step_*")) | |
if not checkpoints: | |
return "No checkpoints found to delete." | |
# Delete each checkpoint directory | |
for checkpoint in checkpoints: | |
if checkpoint.is_dir(): | |
shutil.rmtree(checkpoint) | |
# Also delete session.json which contains previous training info | |
if self.session_file.exists(): | |
self.session_file.unlink() | |
# Reset status file to idle | |
self.save_status(state='idle', message='No training in progress') | |
self.append_log(f"Deleted {len(checkpoints)} checkpoint(s)") | |
return f"Successfully deleted {len(checkpoints)} checkpoint(s)" | |
except Exception as e: | |
error_msg = f"Error deleting checkpoints: {str(e)}" | |
self.append_log(error_msg) | |
return error_msg | |
def clear_training_data(self) -> str: | |
"""Clear all training data""" | |
if self.is_training_running(): | |
return gr.Error("Cannot clear data while training is running") | |
try: | |
for file in TRAINING_VIDEOS_PATH.glob("*.*"): | |
file.unlink() | |
for file in TRAINING_PATH.glob("*.*"): | |
file.unlink() | |
self.append_log("Cleared all training data") | |
return "Training data cleared successfully" | |
except Exception as e: | |
error_msg = f"Error clearing training data: {str(e)}" | |
self.append_log(error_msg) | |
return error_msg | |
def save_status(self, state: str, **kwargs) -> None: | |
"""Save current training status""" | |
status = { | |
'status': state, | |
'timestamp': datetime.now().isoformat(), | |
**kwargs | |
} | |
if state == "Training started" or state == "initializing": | |
gr.Info("Initializing model and dataset..") | |
elif state == "training": | |
#gr.Info("Training started!") | |
# Training is in progress | |
pass | |
elif state == "completed": | |
gr.Info("Training completed!") | |
with open(self.status_file, 'w') as f: | |
json.dump(status, f, indent=2) | |
def _start_log_monitor(self, process: subprocess.Popen) -> None: | |
"""Start monitoring process output for logs""" | |
def monitor(): | |
self.append_log("Starting log monitor thread") | |
def read_stream(stream, is_error=False): | |
if stream: | |
output = stream.readline() | |
if output: | |
# Remove decode() since output is already a string due to universal_newlines=True | |
line = output.strip() | |
self.append_log(line) | |
if is_error: | |
#logger.error(line) | |
pass | |
# Parse metrics only from stdout | |
metrics = parse_training_log(line) | |
if metrics: | |
# Get current status first | |
current_status = self.get_status() | |
# Update with new metrics | |
current_status.update(metrics) | |
# Ensure 'state' is present, use current status if available, default to 'training' | |
if 'status' in current_status: | |
# Use 'status' as 'state' to match the required parameter | |
state = current_status.pop('status', 'training') | |
self.save_status(state, **current_status) | |
else: | |
# If no status in the current_status, use 'training' as the default state | |
self.save_status('training', **current_status) | |
return True | |
return False | |
# Create separate threads to monitor stdout and stderr | |
def monitor_stream(stream, is_error=False): | |
while process.poll() is None: | |
if not read_stream(stream, is_error): | |
time.sleep(0.1) # Short sleep to avoid CPU thrashing | |
# Start threads to monitor each stream | |
stdout_thread = threading.Thread(target=monitor_stream, args=(process.stdout, False)) | |
stderr_thread = threading.Thread(target=monitor_stream, args=(process.stderr, True)) | |
stdout_thread.daemon = True | |
stderr_thread.daemon = True | |
stdout_thread.start() | |
stderr_thread.start() | |
# Wait for process to complete | |
process.wait() | |
# Wait for threads to finish reading any remaining output | |
stdout_thread.join(timeout=2) | |
stderr_thread.join(timeout=2) | |
# Process any remaining output after process ends | |
while read_stream(process.stdout): | |
pass | |
while read_stream(process.stderr, True): | |
pass | |
# Process finished | |
return_code = process.poll() | |
if return_code == 0: | |
success_msg = "Training completed successfully" | |
self.append_log(success_msg) | |
gr.Info(success_msg) | |
self.save_status(state='completed', message=success_msg) | |
# Upload final model if repository was specified | |
session = self.load_session() | |
if session and session['params'].get('repo_id'): | |
repo_id = session['params']['repo_id'] | |
latest_run = max(Path(OUTPUT_PATH).glob('*'), key=os.path.getmtime) | |
if self.upload_to_hub(latest_run, repo_id): | |
self.append_log(f"Model uploaded to {repo_id}") | |
else: | |
self.append_log("Failed to upload model to hub") | |
else: | |
error_msg = f"Training failed with return code {return_code}" | |
self.append_log(error_msg) | |
logger.error(error_msg) | |
self.save_status(state='error', message=error_msg) | |
# Clean up PID file | |
if self.pid_file.exists(): | |
self.pid_file.unlink() | |
monitor_thread = threading.Thread(target=monitor) | |
monitor_thread.daemon = True | |
monitor_thread.start() | |
def upload_to_hub(self, model_path: Path, repo_id: str) -> bool: | |
"""Upload model to Hugging Face Hub | |
Args: | |
model_path: Path to model files | |
repo_id: Repository ID (username/model-name) | |
Returns: | |
bool: Whether upload was successful | |
""" | |
try: | |
token = os.getenv("HF_API_TOKEN") | |
if not token: | |
self.append_log("Error: HF_API_TOKEN not set") | |
return False | |
# Create or get repo | |
create_repo(repo_id, token=token, repo_type="model", exist_ok=True) | |
# Upload files | |
upload_folder( | |
folder_path=str(OUTPUT_PATH), | |
repo_id=repo_id, | |
repo_type="model", | |
commit_message="Training completed" | |
) | |
return True | |
except Exception as e: | |
self.append_log(f"Error uploading to hub: {str(e)}") | |
return False | |
def get_model_output_safetensors(self) -> str: | |
"""Return the path to the model safetensors | |
Returns: | |
Path to created ZIP file | |
""" | |
model_output_safetensors_path = OUTPUT_PATH / "pytorch_lora_weights.safetensors" | |
return str(model_output_safetensors_path) | |
def create_training_dataset_zip(self) -> str: | |
"""Create a ZIP file containing all training data | |
Returns: | |
Path to created ZIP file | |
""" | |
# Create temporary zip file | |
with tempfile.NamedTemporaryFile(suffix='.zip', delete=False) as temp_zip: | |
temp_zip_path = str(temp_zip.name) | |
print(f"Creating zip file for {TRAINING_PATH}..") | |
try: | |
make_archive(TRAINING_PATH, temp_zip_path) | |
print(f"Zip file created!") | |
return temp_zip_path | |
except Exception as e: | |
print(f"Failed to create zip: {str(e)}") | |
raise gr.Error(f"Failed to create zip: {str(e)}") |