Spaces:
Running
Running
| # Run: python3 tests/test_dataset.py | |
| import sys | |
| def test_video_dataset(): | |
| from cogvideox.dataset import VideoDataset | |
| dataset_dirs = VideoDataset( | |
| data_root="assets/tests/", | |
| caption_column="prompts.txt", | |
| video_column="videos.txt", | |
| max_num_frames=49, | |
| id_token=None, | |
| random_flip=None, | |
| ) | |
| dataset_csv = VideoDataset( | |
| data_root="assets/tests/", | |
| dataset_file="assets/tests/metadata.csv", | |
| caption_column="caption", | |
| video_column="video", | |
| max_num_frames=49, | |
| id_token=None, | |
| random_flip=None, | |
| ) | |
| assert len(dataset_dirs) == 1 | |
| assert len(dataset_csv) == 1 | |
| assert dataset_dirs[0]["video"].shape == (49, 3, 480, 720) | |
| assert (dataset_dirs[0]["video"] == dataset_csv[0]["video"]).all() | |
| print(dataset_dirs[0]["video"].shape) | |
| def test_video_dataset_with_resizing(): | |
| from cogvideox.dataset import VideoDatasetWithResizing | |
| dataset_dirs = VideoDatasetWithResizing( | |
| data_root="assets/tests/", | |
| caption_column="prompts.txt", | |
| video_column="videos.txt", | |
| max_num_frames=49, | |
| id_token=None, | |
| random_flip=None, | |
| ) | |
| dataset_csv = VideoDatasetWithResizing( | |
| data_root="assets/tests/", | |
| dataset_file="assets/tests/metadata.csv", | |
| caption_column="caption", | |
| video_column="video", | |
| max_num_frames=49, | |
| id_token=None, | |
| random_flip=None, | |
| ) | |
| assert len(dataset_dirs) == 1 | |
| assert len(dataset_csv) == 1 | |
| assert dataset_dirs[0]["video"].shape == (48, 3, 480, 720) # Changes due to T2V frame bucket sampling | |
| assert (dataset_dirs[0]["video"] == dataset_csv[0]["video"]).all() | |
| print(dataset_dirs[0]["video"].shape) | |
| def test_video_dataset_with_bucket_sampler(): | |
| import torch | |
| from cogvideox.dataset import BucketSampler, VideoDatasetWithResizing | |
| from torch.utils.data import DataLoader | |
| dataset_dirs = VideoDatasetWithResizing( | |
| data_root="assets/tests/", | |
| caption_column="prompts_multi.txt", | |
| video_column="videos_multi.txt", | |
| max_num_frames=49, | |
| id_token=None, | |
| random_flip=None, | |
| ) | |
| sampler = BucketSampler(dataset_dirs, batch_size=8) | |
| def collate_fn(data): | |
| captions = [x["prompt"] for x in data[0]] | |
| videos = [x["video"] for x in data[0]] | |
| videos = torch.stack(videos) | |
| return captions, videos | |
| dataloader = DataLoader(dataset_dirs, batch_size=1, sampler=sampler, collate_fn=collate_fn) | |
| first = False | |
| for captions, videos in dataloader: | |
| if not first: | |
| assert len(captions) == 8 and isinstance(captions[0], str) | |
| assert videos.shape == (8, 48, 3, 480, 720) | |
| first = True | |
| else: | |
| assert len(captions) == 8 and isinstance(captions[0], str) | |
| assert videos.shape == (8, 48, 3, 256, 360) | |
| break | |
| if __name__ == "__main__": | |
| sys.path.append("./training") | |
| test_video_dataset() | |
| test_video_dataset_with_resizing() | |
| test_video_dataset_with_bucket_sampler() | |