Spaces:
Running
Running
File size: 29,173 Bytes
0ad7e2a 89bbef2 c8589f9 64a70c0 d2662cc c6546ad 7c52128 0d34ea8 7c52128 89bbef2 7c52128 0ad7e2a 89bbef2 ab45a2c 89bbef2 0d34ea8 89bbef2 0ad7e2a 89bbef2 0ad7e2a 89bbef2 c8cb798 b613c3c 89bbef2 c8cb798 b613c3c 0ad7e2a c8cb798 89bbef2 66c6879 0ad7e2a 64a70c0 0ad7e2a 892fa67 0ad7e2a 89bbef2 0ad7e2a 89bbef2 892fa67 aa1e877 0ad7e2a aa1e877 89bbef2 aa1e877 89bbef2 0ad7e2a 89bbef2 99d6382 89bbef2 0ad7e2a 89bbef2 9000726 ed18efe 89bbef2 99d6382 89bbef2 9000726 89bbef2 ed18efe 89bbef2 0d34ea8 89bbef2 0ad7e2a d464085 0ad7e2a 89bbef2 0ad7e2a 89bbef2 a3e57a3 89bbef2 a3e57a3 89bbef2 d2662cc 89bbef2 0d34ea8 f1c60d3 0ad7e2a 89bbef2 0ad7e2a 89bbef2 0ad7e2a c6546ad 0ad7e2a c6546ad a3e57a3 c6546ad 89bbef2 c6546ad adc5756 c6546ad 89bbef2 a3e57a3 adc5756 ed18efe a3e57a3 ed18efe 0ad7e2a 89bbef2 0ad7e2a 89bbef2 0ad7e2a 89bbef2 0ad7e2a 892fa67 0ad7e2a a3e57a3 892fa67 c8589f9 c6546ad c8589f9 d464085 c8589f9 c6546ad d464085 892fa67 c8cb798 892fa67 0ad7e2a 892fa67 0ad7e2a 892fa67 c6546ad 0ad7e2a c6546ad c8589f9 c6546ad c8589f9 c6546ad c8589f9 c6546ad c8589f9 d2662cc ab45a2c 0d34ea8 d2662cc ab45a2c d2662cc ab45a2c d2662cc ab45a2c 246c64e ab45a2c 246c64e ab45a2c 246c64e c6546ad d464085 c6546ad d464085 c6546ad d464085 c6546ad d464085 c6546ad c8589f9 c6546ad 0ad7e2a 7c52128 38cfbff 0ad7e2a a3e57a3 0ad7e2a c8589f9 0ad7e2a c8589f9 d2662cc d464085 0ad7e2a c6546ad 0ad7e2a 38cfbff 7c52128 0d34ea8 0ad7e2a ab45a2c 0ad7e2a d2662cc 0ad7e2a d2662cc d464085 c6546ad 0ad7e2a c8cb798 0ad7e2a c8cb798 0ad7e2a c8cb798 0ad7e2a c6546ad 0ad7e2a 38cfbff 0ad7e2a c8cb798 0ad7e2a 892fa67 a3e57a3 892fa67 c8cb798 892fa67 ed18efe 9000726 892fa67 ed18efe 9000726 892fa67 a3e57a3 ed18efe a3e57a3 9000726 892fa67 0ad7e2a 892fa67 a3e57a3 892fa67 0ad7e2a a3e57a3 0ad7e2a ed18efe 0ad7e2a 89bbef2 0ad7e2a 64a70c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
import platform
import gradio as gr
from pathlib import Path
import logging
import asyncio
from typing import Any, Optional, Dict, List, Union, Tuple
from vms.config import (
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, OUTPUT_PATH,
TRAINING_PATH, LOG_FILE_PATH, TRAINING_PRESETS, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH,
MODEL_TYPES, SMALL_TRAINING_BUCKETS, TRAINING_TYPES, MODEL_VERSIONS,
DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
DEFAULT_BATCH_SIZE, DEFAULT_CAPTION_DROPOUT_P,
DEFAULT_LEARNING_RATE,
DEFAULT_LORA_RANK, DEFAULT_LORA_ALPHA,
DEFAULT_LORA_RANK_STR, DEFAULT_LORA_ALPHA_STR,
DEFAULT_SEED,
DEFAULT_NUM_GPUS,
DEFAULT_MAX_GPUS,
DEFAULT_PRECOMPUTATION_ITEMS,
DEFAULT_NB_TRAINING_STEPS,
DEFAULT_NB_LR_WARMUP_STEPS,
DEFAULT_AUTO_RESUME
)
from vms.utils import (
get_recommended_precomputation_items,
count_media_files,
format_media_title,
TrainingLogParser
)
from vms.ui.project.services import (
TrainingService, CaptioningService, SplittingService, ImportingService, PreviewingService
)
from vms.ui.project.tabs import (
ImportTab, CaptionTab, TrainTab, PreviewTab, ManageTab
)
from vms.ui.monitoring.services import (
MonitoringService
)
from vms.ui.monitoring.tabs import (
GeneralTab, GPUTab
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
httpx_logger = logging.getLogger('httpx')
httpx_logger.setLevel(logging.WARN)
class AppUI:
def __init__(self):
"""Initialize services and tabs"""
# Project view
self.training = TrainingService(self)
self.splitting = SplittingService()
self.importing = ImportingService()
self.captioning = CaptioningService()
self.previewing = PreviewingService()
# Monitoring view
self.monitoring = MonitoringService()
self.monitoring.start_monitoring()
# Recovery status from any interrupted training
recovery_result = self.training.recover_interrupted_training()
# Add null check for recovery_result
if recovery_result is None:
recovery_result = {"status": "unknown", "ui_updates": {}}
self.recovery_status = recovery_result.get("status", "unknown")
self.ui_updates = recovery_result.get("ui_updates", {})
# Initialize log parser
self.log_parser = TrainingLogParser()
# Shared state for tabs
self.state = {
"recovery_result": recovery_result
}
# Initialize tabs dictionary
self.tabs = {}
self.project_tabs = {}
self.monitor_tabs = {}
self.main_tabs = None # Main tabbed interface
self.project_tabs_component = None # Project sub-tabs
self.monitor_tabs_component = None # Monitor sub-tabs
# Log recovery status
logger.info(f"Initialization complete. Recovery status: {self.recovery_status}")
def add_periodic_callback(self, callback_fn, interval=1.0):
"""Add a periodic callback function to the UI
Args:
callback_fn: Function to call periodically
interval: Time in seconds between calls (default: 1.0)
"""
try:
# Store a reference to the callback function
if not hasattr(self, "_periodic_callbacks"):
self._periodic_callbacks = []
self._periodic_callbacks.append(callback_fn)
# Add the callback to the Gradio app
self.app.add_callback(
interval, # Interval in seconds
callback_fn, # Function to call
inputs=None, # No inputs needed
outputs=list(self.components.values()) # All components as possible outputs
)
logger.info(f"Added periodic callback {callback_fn.__name__} with interval {interval}s")
except Exception as e:
logger.error(f"Error adding periodic callback: {e}", exc_info=True)
def switch_to_tab(self, tab_index: int):
"""Switch to the specified tab index
Args:
tab_index: Index of the tab to select (0 for Project, 1 for Monitor)
Returns:
Tab selection dictionary for Gradio
"""
return gr.Tabs(selected=tab_index)
def create_ui(self):
self.components = {}
"""Create the main Gradio UI with tabbed navigation"""
with gr.Blocks(
title="ποΈ Video Model Studio",
# Let's hack Gradio!
css="#main-tabs > .tab-wrapper{ display: none; }") as app:
self.app = app
# Main container with sidebar and tab area
with gr.Row():
# Sidebar for navigation
with gr.Sidebar(position="left", open=True):
gr.Markdown("# ποΈ Video Model Studio")
self.components["current_project_btn"] = gr.Button("π New Project", variant="primary")
self.components["system_monitoring_btn"] = gr.Button("π‘οΈ System Monitoring")
# Main content area with tabs
with gr.Column():
# Main tabbed interface for switching between Project and Monitor views
with gr.Tabs(elem_id="main-tabs") as main_tabs:
self.main_tabs = main_tabs
# Project View Tab
with gr.Tab("π New Project", id=0) as project_view:
# Create project tabs
with gr.Tabs() as project_tabs:
# Store reference to project tabs component
self.project_tabs_component = project_tabs
# Initialize project tab objects
self.project_tabs["import_tab"] = ImportTab(self)
self.project_tabs["caption_tab"] = CaptionTab(self)
self.project_tabs["train_tab"] = TrainTab(self)
self.project_tabs["preview_tab"] = PreviewTab(self)
self.project_tabs["manage_tab"] = ManageTab(self)
# Create tab UI components for project
for tab_id, tab_obj in self.project_tabs.items():
tab_obj.create(project_tabs)
# Monitoring View Tab
with gr.Tab("π‘οΈ System Monitoring", id=1) as monitoring_view:
# Create monitoring tabs
with gr.Tabs() as monitoring_tabs:
# Store reference to monitoring tabs component
self.monitor_tabs_component = monitoring_tabs
# Initialize monitoring tab objects
self.monitor_tabs["general_tab"] = GeneralTab(self)
self.monitor_tabs["gpu_tab"] = GPUTab(self)
# Create tab UI components for monitoring
for tab_id, tab_obj in self.monitor_tabs.items():
tab_obj.create(monitoring_tabs)
# Combine all tabs into a single dictionary for event handling
self.tabs = {**self.project_tabs, **self.monitor_tabs}
# Connect event handlers for all tabs - this must happen AFTER all tabs are created
for tab_id, tab_obj in self.tabs.items():
tab_obj.connect_events()
# app-level timers for auto-refresh functionality
self._add_timers()
# Connect navigation events using tab switching
self.components["current_project_btn"].click(
fn=lambda: self.switch_to_tab(0),
outputs=[self.main_tabs],
)
self.components["system_monitoring_btn"].click(
fn=lambda: self.switch_to_tab(1),
outputs=[self.main_tabs],
)
# Initialize app state on load
app.load(
fn=self.initialize_app_state,
outputs=[
self.project_tabs["caption_tab"].components["training_dataset"],
self.project_tabs["train_tab"].components["start_btn"],
self.project_tabs["train_tab"].components["resume_btn"],
self.project_tabs["train_tab"].components["stop_btn"],
self.project_tabs["train_tab"].components["delete_checkpoints_btn"],
self.project_tabs["train_tab"].components["training_preset"],
self.project_tabs["train_tab"].components["model_type"],
self.project_tabs["train_tab"].components["model_version"],
self.project_tabs["train_tab"].components["training_type"],
self.project_tabs["train_tab"].components["lora_rank"],
self.project_tabs["train_tab"].components["lora_alpha"],
self.project_tabs["train_tab"].components["train_steps"],
self.project_tabs["train_tab"].components["batch_size"],
self.project_tabs["train_tab"].components["learning_rate"],
self.project_tabs["train_tab"].components["save_iterations"],
self.project_tabs["train_tab"].components["current_task_box"],
self.project_tabs["train_tab"].components["num_gpus"],
self.project_tabs["train_tab"].components["precomputation_items"],
self.project_tabs["train_tab"].components["lr_warmup_steps"],
self.project_tabs["train_tab"].components["auto_resume"]
]
)
return app
def _add_timers(self):
"""Add auto-refresh timers to the UI"""
# Status update timer for text components (every 1 second)
status_timer = gr.Timer(value=1)
status_timer.tick(
fn=self.project_tabs["train_tab"].get_status_updates,
outputs=[
self.project_tabs["train_tab"].components["status_box"],
self.project_tabs["train_tab"].components["log_box"],
self.project_tabs["train_tab"].components["current_task_box"] if "current_task_box" in self.project_tabs["train_tab"].components else None
]
)
# Button update timer for button components (every 1 second)
button_timer = gr.Timer(value=1)
button_outputs = [
self.project_tabs["train_tab"].components["start_btn"],
self.project_tabs["train_tab"].components["resume_btn"],
self.project_tabs["train_tab"].components["stop_btn"],
self.project_tabs["train_tab"].components["delete_checkpoints_btn"]
]
button_timer.tick(
fn=self.project_tabs["train_tab"].get_button_updates,
outputs=button_outputs
)
# Dataset refresh timer (every 5 seconds)
dataset_timer = gr.Timer(value=5)
dataset_timer.tick(
fn=self.refresh_dataset,
outputs=[
self.project_tabs["caption_tab"].components["training_dataset"]
]
)
# Titles update timer (every 6 seconds)
titles_timer = gr.Timer(value=6)
titles_timer.tick(
fn=self.update_titles,
outputs=[
self.project_tabs["caption_tab"].components["caption_title"],
self.project_tabs["train_tab"].components["train_title"]
]
)
def initialize_app_state(self):
"""Initialize all app state in one function to ensure correct output count"""
# Get dataset info
training_dataset = self.project_tabs["caption_tab"].list_training_files_to_caption()
# Get button states based on recovery status
button_states = self.get_initial_button_states()
start_btn = button_states[0]
resume_btn = button_states[1]
stop_btn = button_states[2]
delete_checkpoints_btn = button_states[3]
# Get UI form values - possibly from the recovery
if self.recovery_status in ["recovered", "ready_to_recover", "running"] and "ui_updates" in self.state["recovery_result"]:
recovery_ui = self.state["recovery_result"]["ui_updates"]
# If we recovered training parameters from the original session
ui_state = {}
# Handle model_type specifically - could be internal or display name
if "model_type" in recovery_ui:
model_type_value = recovery_ui["model_type"]
# Remove " (LoRA)" suffix if present
if " (LoRA)" in model_type_value:
model_type_value = model_type_value.replace(" (LoRA)", "")
logger.info(f"Removed (LoRA) suffix from model type: {model_type_value}")
# If it's an internal name, convert to display name
if model_type_value not in MODEL_TYPES:
# Find the display name for this internal model type
for display_name, internal_name in MODEL_TYPES.items():
if internal_name == model_type_value:
model_type_value = display_name
logger.info(f"Converted internal model type '{recovery_ui['model_type']}' to display name '{model_type_value}'")
break
ui_state["model_type"] = model_type_value
# Handle training_type
if "training_type" in recovery_ui:
training_type_value = recovery_ui["training_type"]
# If it's an internal name, convert to display name
if training_type_value not in TRAINING_TYPES:
for display_name, internal_name in TRAINING_TYPES.items():
if internal_name == training_type_value:
training_type_value = display_name
logger.info(f"Converted internal training type '{recovery_ui['training_type']}' to display name '{training_type_value}'")
break
ui_state["training_type"] = training_type_value
# Copy other parameters
for param in ["lora_rank", "lora_alpha", "train_steps",
"batch_size", "learning_rate", "save_iterations", "training_preset"]:
if param in recovery_ui:
ui_state[param] = recovery_ui[param]
# Merge with existing UI state if needed
if ui_state:
current_state = self.load_ui_values()
current_state.update(ui_state)
self.training.save_ui_state(current_state)
logger.info(f"Updated UI state from recovery: {ui_state}")
# Load values (potentially with recovery updates applied)
ui_state = self.load_ui_values()
# Ensure model_type is a valid display name
model_type_val = ui_state.get("model_type", list(MODEL_TYPES.keys())[0])
# Remove " (LoRA)" suffix if present
if " (LoRA)" in model_type_val:
model_type_val = model_type_val.replace(" (LoRA)", "")
logger.info(f"Removed (LoRA) suffix from model type: {model_type_val}")
# Ensure it's a valid model type in the dropdown
if model_type_val not in MODEL_TYPES:
# Convert from internal to display name or use default
model_type_found = False
for display_name, internal_name in MODEL_TYPES.items():
if internal_name == model_type_val:
model_type_val = display_name
model_type_found = True
break
# If still not found, use the first model type
if not model_type_found:
model_type_val = list(MODEL_TYPES.keys())[0]
logger.warning(f"Invalid model type '{model_type_val}', using default: {model_type_val}")
# Get model_version value
model_version_val = ""
auto_resume_val = ui_state.get("auto_resume", DEFAULT_AUTO_RESUME)
# First get the internal model type for the currently selected model
model_internal_type = MODEL_TYPES.get(model_type_val)
logger.info(f"Initializing model version for model_type: {model_type_val} (internal: {model_internal_type})")
if model_internal_type and model_internal_type in MODEL_VERSIONS:
# Get available versions for this model type as simple strings
available_model_versions = list(MODEL_VERSIONS.get(model_internal_type, {}).keys())
# Log for debugging
logger.info(f"Available versions: {available_model_versions}")
# Set model_version_val to saved value if valid, otherwise first available
if "model_version" in ui_state and ui_state["model_version"] in available_model_versions:
model_version_val = ui_state["model_version"]
logger.info(f"Using saved model version: {model_version_val}")
elif available_model_versions:
model_version_val = available_model_versions[0]
logger.info(f"Using first available model version: {model_version_val}")
# IMPORTANT: Create a new list of simple strings for the dropdown choices
# This ensures each choice is a single string, not a tuple or other structure
simple_choices = [str(version) for version in available_model_versions]
# Update the dropdown choices directly in the UI component
try:
self.project_tabs["train_tab"].components["model_version"].choices = simple_choices
logger.info(f"Updated model_version dropdown choices: {len(simple_choices)} options")
except Exception as e:
logger.error(f"Error updating model_version dropdown: {str(e)}")
else:
logger.warning(f"No versions available for model type: {model_type_val}")
# Set empty choices to avoid errors
try:
self.project_tabs["train_tab"].components["model_version"].choices = []
except Exception as e:
logger.error(f"Error setting empty model_version choices: {str(e)}")
# Ensure training_type is a valid display name
training_type_val = ui_state.get("training_type", list(TRAINING_TYPES.keys())[0])
if training_type_val not in TRAINING_TYPES:
# Convert from internal to display name or use default
training_type_found = False
for display_name, internal_name in TRAINING_TYPES.items():
if internal_name == training_type_val:
training_type_val = display_name
training_type_found = True
break
# If still not found, use the first training type
if not training_type_found:
training_type_val = list(TRAINING_TYPES.keys())[0]
logger.warning(f"Invalid training type '{training_type_val}', using default: {training_type_val}")
# Validate training preset
training_preset = ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0])
if training_preset not in TRAINING_PRESETS:
training_preset = list(TRAINING_PRESETS.keys())[0]
logger.warning(f"Invalid training preset '{training_preset}', using default: {training_preset}")
lora_rank_val = ui_state.get("lora_rank", DEFAULT_LORA_RANK_STR)
lora_alpha_val = ui_state.get("lora_alpha", DEFAULT_LORA_ALPHA_STR)
batch_size_val = int(ui_state.get("batch_size", DEFAULT_BATCH_SIZE))
learning_rate_val = float(ui_state.get("learning_rate", DEFAULT_LEARNING_RATE))
save_iterations_val = int(ui_state.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS))
num_gpus_val = int(ui_state.get("num_gpus", DEFAULT_NUM_GPUS))
# Calculate recommended precomputation items based on video count
video_count = len(list(TRAINING_VIDEOS_PATH.glob('*.mp4')))
recommended_precomputation = get_recommended_precomputation_items(video_count, num_gpus_val)
precomputation_items_val = int(ui_state.get("precomputation_items", recommended_precomputation))
# Ensure warmup steps are not more than training steps
train_steps_val = int(ui_state.get("train_steps", DEFAULT_NB_TRAINING_STEPS))
default_warmup = min(DEFAULT_NB_LR_WARMUP_STEPS, int(train_steps_val * 0.2))
lr_warmup_steps_val = int(ui_state.get("lr_warmup_steps", default_warmup))
# Ensure warmup steps <= training steps
lr_warmup_steps_val = min(lr_warmup_steps_val, train_steps_val)
# Initial current task value
current_task_val = ""
if hasattr(self, 'log_parser') and self.log_parser:
current_task_val = self.log_parser.get_current_task_display()
# Return all values in the exact order expected by outputs
return (
training_dataset,
start_btn,
resume_btn,
stop_btn,
delete_checkpoints_btn,
training_preset,
model_type_val,
model_version_val,
training_type_val,
lora_rank_val,
lora_alpha_val,
train_steps_val,
batch_size_val,
learning_rate_val,
save_iterations_val,
current_task_val,
num_gpus_val,
precomputation_items_val,
lr_warmup_steps_val,
auto_resume_val
)
def initialize_ui_from_state(self):
"""Initialize UI components from saved state"""
ui_state = self.load_ui_values()
# Get model type and determine the default model version if not specified
model_type = ui_state.get("model_type", list(MODEL_TYPES.keys())[0])
model_internal_type = MODEL_TYPES.get(model_type)
# Get model_version, defaulting to first available version if not set
model_version = ui_state.get("model_version", "")
if not model_version and model_internal_type and model_internal_type in MODEL_VERSIONS:
versions = list(MODEL_VERSIONS.get(model_internal_type, {}).keys())
if versions:
model_version = versions[0]
# Return values in order matching the outputs in app.load
return (
ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]),
model_type,
model_version,
ui_state.get("training_type", list(TRAINING_TYPES.keys())[0]),
ui_state.get("lora_rank", DEFAULT_LORA_RANK_STR),
ui_state.get("lora_alpha", DEFAULT_LORA_ALPHA_STR),
ui_state.get("train_steps", DEFAULT_NB_TRAINING_STEPS),
ui_state.get("batch_size", DEFAULT_BATCH_SIZE),
ui_state.get("learning_rate", DEFAULT_LEARNING_RATE),
ui_state.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS)
)
def update_ui_state(self, **kwargs):
"""Update UI state with new values"""
current_state = self.training.load_ui_state()
current_state.update(kwargs)
self.training.save_ui_state(current_state)
# Don't return anything to avoid Gradio warnings
return None
def load_ui_values(self):
"""Load UI state values for initializing form fields"""
ui_state = self.training.load_ui_state()
# Ensure proper type conversion for numeric values
ui_state["lora_rank"] = ui_state.get("lora_rank", DEFAULT_LORA_RANK_STR)
ui_state["lora_alpha"] = ui_state.get("lora_alpha", DEFAULT_LORA_ALPHA_STR)
ui_state["train_steps"] = int(ui_state.get("train_steps", DEFAULT_NB_TRAINING_STEPS))
ui_state["batch_size"] = int(ui_state.get("batch_size", DEFAULT_BATCH_SIZE))
ui_state["learning_rate"] = float(ui_state.get("learning_rate", DEFAULT_LEARNING_RATE))
ui_state["save_iterations"] = int(ui_state.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS))
return ui_state
# Add this new method to get initial button states:
def get_initial_button_states(self):
"""Get the initial states for training buttons based on recovery status"""
recovery_result = self.state.get("recovery_result") or self.training.recover_interrupted_training()
ui_updates = recovery_result.get("ui_updates", {})
# Check for checkpoints to determine start button text
checkpoints = list(OUTPUT_PATH.glob("finetrainers_step_*"))
has_checkpoints = len(checkpoints) > 0
# Default button states if recovery didn't provide any
if not ui_updates or not ui_updates.get("start_btn"):
is_training = self.training.is_training_running()
if is_training:
# Active training detected
start_btn_props = {"interactive": False, "variant": "secondary", "value": "π Start new training"}
resume_btn_props = {"interactive": False, "variant": "secondary", "value": "πΈ Start from latest checkpoint"}
stop_btn_props = {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"}
delete_btn_props = {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}
else:
# No active training
start_btn_props = {"interactive": True, "variant": "primary", "value": "π Start new training"}
resume_btn_props = {"interactive": has_checkpoints, "variant": "primary", "value": "πΈ Start from latest checkpoint"}
stop_btn_props = {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}
delete_btn_props = {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"}
else:
# Use button states from recovery, adding the new resume button
start_btn_props = ui_updates.get("start_btn", {"interactive": True, "variant": "primary", "value": "π Start new training"})
resume_btn_props = {"interactive": has_checkpoints and not self.training.is_training_running(),
"variant": "primary", "value": "πΈ Start from latest checkpoint"}
stop_btn_props = ui_updates.get("stop_btn", {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"})
delete_btn_props = ui_updates.get("delete_checkpoints_btn", {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"})
# Return button states in the correct order
return (
gr.Button(**start_btn_props),
gr.Button(**resume_btn_props), # Add the new resume button
gr.Button(**stop_btn_props),
gr.Button(**delete_btn_props)
)
def update_titles(self) -> Tuple[Any]:
"""Update all dynamic titles with current counts
Returns:
Dict of Gradio updates
"""
# Count files for captioning
caption_videos, caption_images, caption_size = count_media_files(STAGING_PATH)
caption_title = format_media_title(
"caption", caption_videos, caption_images, caption_size
)
# Count files for training
train_videos, train_images, train_size = count_media_files(TRAINING_VIDEOS_PATH)
train_title = format_media_title(
"train", train_videos, train_images, train_size
)
return (
gr.Markdown(value=caption_title),
gr.Markdown(value=f"{train_title}")
)
def refresh_dataset(self):
"""Refresh all dynamic lists and training state"""
training_dataset = self.project_tabs["caption_tab"].list_training_files_to_caption()
return (
training_dataset
) |