Spaces:
Running
Running
File size: 37,525 Bytes
c8cb798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
[](#ltx-video)LTX Video
=======================

[LTX Video](https://huggingface.co/Lightricks/LTX-Video) is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content. We provide a model for both text-to-video as well as image + text-to-video usecases.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Available models:
Model name
Recommended dtype
[`LTX Video 0.9.0`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.safetensors)
`torch.bfloat16`
[`LTX Video 0.9.1`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors)
`torch.bfloat16`
Note: The recommended dtype is for the transformer component. The VAE and text encoders can be either `torch.float32`, `torch.bfloat16` or `torch.float16` but the recommended dtype is `torch.bfloat16` as used in the original repository.
[](#loading-single-files)Loading Single Files
---------------------------------------------
Loading the original LTX Video checkpoints is also possible with `~ModelMixin.from_single_file`. We recommend using `from_single_file` for the Lightricks series of models, as they plan to release multiple models in the future in the single file format.
Copied
import torch
from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel
\# \`single\_file\_url\` could also be https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.1.safetensors
single\_file\_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
transformer = LTXVideoTransformer3DModel.from\_single\_file(
single\_file\_url, torch\_dtype=torch.bfloat16
)
vae = AutoencoderKLLTXVideo.from\_single\_file(single\_file\_url, torch\_dtype=torch.bfloat16)
pipe = LTXImageToVideoPipeline.from\_pretrained(
"Lightricks/LTX-Video", transformer=transformer, vae=vae, torch\_dtype=torch.bfloat16
)
\# ... inference code ...
Alternatively, the pipeline can be used to load the weights with `~FromSingleFileMixin.from_single_file`.
Copied
import torch
from diffusers import LTXImageToVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
single\_file\_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
text\_encoder = T5EncoderModel.from\_pretrained(
"Lightricks/LTX-Video", subfolder="text\_encoder", torch\_dtype=torch.bfloat16
)
tokenizer = T5Tokenizer.from\_pretrained(
"Lightricks/LTX-Video", subfolder="tokenizer", torch\_dtype=torch.bfloat16
)
pipe = LTXImageToVideoPipeline.from\_single\_file(
single\_file\_url, text\_encoder=text\_encoder, tokenizer=tokenizer, torch\_dtype=torch.bfloat16
)
Loading [LTX GGUF checkpoints](https://huggingface.co/city96/LTX-Video-gguf) are also supported:
Copied
import torch
from diffusers.utils import export\_to\_video
from diffusers import LTXPipeline, LTXVideoTransformer3DModel, GGUFQuantizationConfig
ckpt\_path = (
"https://huggingface.co/city96/LTX-Video-gguf/blob/main/ltx-video-2b-v0.9-Q3\_K\_S.gguf"
)
transformer = LTXVideoTransformer3DModel.from\_single\_file(
ckpt\_path,
quantization\_config=GGUFQuantizationConfig(compute\_dtype=torch.bfloat16),
torch\_dtype=torch.bfloat16,
)
pipe = LTXPipeline.from\_pretrained(
"Lightricks/LTX-Video",
transformer=transformer,
torch\_dtype=torch.bfloat16,
)
pipe.enable\_model\_cpu\_offload()
prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
negative\_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipe(
prompt=prompt,
negative\_prompt=negative\_prompt,
width=704,
height=480,
num\_frames=161,
num\_inference\_steps=50,
).frames\[0\]
export\_to\_video(video, "output\_gguf\_ltx.mp4", fps=24)
Make sure to read the [documentation on GGUF](../../quantization/gguf) to learn more about our GGUF support.
Loading and running inference with [LTX Video 0.9.1](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) weights.
Copied
import torch
from diffusers import LTXPipeline
from diffusers.utils import export\_to\_video
pipe = LTXPipeline.from\_pretrained("a-r-r-o-w/LTX-Video-0.9.1-diffusers", torch\_dtype=torch.bfloat16)
pipe.to("cuda")
prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
negative\_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipe(
prompt=prompt,
negative\_prompt=negative\_prompt,
width=768,
height=512,
num\_frames=161,
decode\_timestep=0.03,
decode\_noise\_scale=0.025,
num\_inference\_steps=50,
).frames\[0\]
export\_to\_video(video, "output.mp4", fps=24)
Refer to [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox#memory-optimization) to learn more about optimizing memory consumption.
[](#quantization)Quantization
-----------------------------
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [LTXPipeline](/docs/diffusers/main/en/api/pipelines/ltx_video#diffusers.LTXPipeline) for inference with bitsandbytes.
Copied
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, LTXVideoTransformer3DModel, LTXPipeline
from diffusers.utils import export\_to\_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant\_config = BitsAndBytesConfig(load\_in\_8bit=True)
text\_encoder\_8bit = T5EncoderModel.from\_pretrained(
"Lightricks/LTX-Video",
subfolder="text\_encoder",
quantization\_config=quant\_config,
torch\_dtype=torch.float16,
)
quant\_config = DiffusersBitsAndBytesConfig(load\_in\_8bit=True)
transformer\_8bit = LTXVideoTransformer3DModel.from\_pretrained(
"Lightricks/LTX-Video",
subfolder="transformer",
quantization\_config=quant\_config,
torch\_dtype=torch.float16,
)
pipeline = LTXPipeline.from\_pretrained(
"Lightricks/LTX-Video",
text\_encoder=text\_encoder\_8bit,
transformer=transformer\_8bit,
torch\_dtype=torch.float16,
device\_map="balanced",
)
prompt = "A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting."
video = pipeline(prompt=prompt, num\_frames=161, num\_inference\_steps=50).frames\[0\]
export\_to\_video(video, "ship.mp4", fps=24)
[](#diffusers.LTXPipeline)LTXPipeline
-------------------------------------
### class diffusers.LTXPipeline
[](#diffusers.LTXPipeline)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/ltx/pipeline_ltx.py#L143)
( scheduler: FlowMatchEulerDiscreteSchedulervae: AutoencoderKLLTXVideotext\_encoder: T5EncoderModeltokenizer: T5TokenizerFasttransformer: LTXVideoTransformer3DModel )
Parameters
* [](#diffusers.LTXPipeline.transformer)**transformer** ([LTXVideoTransformer3DModel](/docs/diffusers/main/en/api/models/ltx_video_transformer3d#diffusers.LTXVideoTransformer3DModel)) β Conditional Transformer architecture to denoise the encoded video latents.
* [](#diffusers.LTXPipeline.scheduler)**scheduler** ([FlowMatchEulerDiscreteScheduler](/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler)) β A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
* [](#diffusers.LTXPipeline.vae)**vae** ([AutoencoderKLLTXVideo](/docs/diffusers/main/en/api/models/autoencoderkl_ltx_video#diffusers.AutoencoderKLLTXVideo)) β Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
* [](#diffusers.LTXPipeline.text_encoder)**text\_encoder** (`T5EncoderModel`) β [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically the [google/t5-v1\_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
* [](#diffusers.LTXPipeline.tokenizer)**tokenizer** (`CLIPTokenizer`) β Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
* [](#diffusers.LTXPipeline.tokenizer)**tokenizer** (`T5TokenizerFast`) β Second Tokenizer of class [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
Pipeline for text-to-video generation.
Reference: [https://github.com/Lightricks/LTX-Video](https://github.com/Lightricks/LTX-Video)
#### \_\_call\_\_
[](#diffusers.LTXPipeline.__call__)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/ltx/pipeline_ltx.py#L500)
( prompt: typing.Union\[str, typing.List\[str\]\] = Nonenegative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Noneheight: int = 512width: int = 704num\_frames: int = 161frame\_rate: int = 25num\_inference\_steps: int = 50timesteps: typing.List\[int\] = Noneguidance\_scale: float = 3num\_videos\_per\_prompt: typing.Optional\[int\] = 1generator: typing.Union\[torch.\_C.Generator, typing.List\[torch.\_C.Generator\], NoneType\] = Nonelatents: typing.Optional\[torch.Tensor\] = Noneprompt\_embeds: typing.Optional\[torch.Tensor\] = Noneprompt\_attention\_mask: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_attention\_mask: typing.Optional\[torch.Tensor\] = Nonedecode\_timestep: typing.Union\[float, typing.List\[float\]\] = 0.0decode\_noise\_scale: typing.Union\[float, typing.List\[float\], NoneType\] = Noneoutput\_type: typing.Optional\[str\] = 'pil'return\_dict: bool = Trueattention\_kwargs: typing.Optional\[typing.Dict\[str, typing.Any\]\] = Nonecallback\_on\_step\_end: typing.Optional\[typing.Callable\[\[int, int, typing.Dict\], NoneType\]\] = Nonecallback\_on\_step\_end\_tensor\_inputs: typing.List\[str\] = \['latents'\]max\_sequence\_length: int = 128 ) β export const metadata = 'undefined';`~pipelines.ltx.LTXPipelineOutput` or `tuple`
Expand 22 parameters
Parameters
* [](#diffusers.LTXPipeline.__call__.prompt)**prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead.
* [](#diffusers.LTXPipeline.__call__.height)**height** (`int`, defaults to `512`) β The height in pixels of the generated image. This is set to 480 by default for the best results.
* [](#diffusers.LTXPipeline.__call__.width)**width** (`int`, defaults to `704`) β The width in pixels of the generated image. This is set to 848 by default for the best results.
* [](#diffusers.LTXPipeline.__call__.num_frames)**num\_frames** (`int`, defaults to `161`) β The number of video frames to generate
* [](#diffusers.LTXPipeline.__call__.num_inference_steps)**num\_inference\_steps** (`int`, _optional_, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
* [](#diffusers.LTXPipeline.__call__.timesteps)**timesteps** (`List[int]`, _optional_) β Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order.
* [](#diffusers.LTXPipeline.__call__.guidance_scale)**guidance\_scale** (`float`, defaults to `3` ) β Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
* [](#diffusers.LTXPipeline.__call__.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β The number of videos to generate per prompt.
* [](#diffusers.LTXPipeline.__call__.generator)**generator** (`torch.Generator` or `List[torch.Generator]`, _optional_) β One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic.
* [](#diffusers.LTXPipeline.__call__.latents)**latents** (`torch.Tensor`, _optional_) β Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`.
* [](#diffusers.LTXPipeline.__call__.prompt_embeds)**prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.LTXPipeline.__call__.prompt_attention_mask)**prompt\_attention\_mask** (`torch.Tensor`, _optional_) β Pre-generated attention mask for text embeddings.
* [](#diffusers.LTXPipeline.__call__.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.FloatTensor`, _optional_) β Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.LTXPipeline.__call__.negative_prompt_attention_mask)**negative\_prompt\_attention\_mask** (`torch.FloatTensor`, _optional_) β Pre-generated attention mask for negative text embeddings.
* [](#diffusers.LTXPipeline.__call__.decode_timestep)**decode\_timestep** (`float`, defaults to `0.0`) β The timestep at which generated video is decoded.
* [](#diffusers.LTXPipeline.__call__.decode_noise_scale)**decode\_noise\_scale** (`float`, defaults to `None`) β The interpolation factor between random noise and denoised latents at the decode timestep.
* [](#diffusers.LTXPipeline.__call__.output_type)**output\_type** (`str`, _optional_, defaults to `"pil"`) β The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
* [](#diffusers.LTXPipeline.__call__.return_dict)**return\_dict** (`bool`, _optional_, defaults to `True`) β Whether or not to return a `~pipelines.ltx.LTXPipelineOutput` instead of a plain tuple.
* [](#diffusers.LTXPipeline.__call__.attention_kwargs)**attention\_kwargs** (`dict`, _optional_) β A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention\_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
* [](#diffusers.LTXPipeline.__call__.callback_on_step_end)**callback\_on\_step\_end** (`Callable`, _optional_) β A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
* [](#diffusers.LTXPipeline.__call__.callback_on_step_end_tensor_inputs)**callback\_on\_step\_end\_tensor\_inputs** (`List`, _optional_) β The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
* [](#diffusers.LTXPipeline.__call__.max_sequence_length)**max\_sequence\_length** (`int` defaults to `128` ) β Maximum sequence length to use with the `prompt`.
Returns
export const metadata = 'undefined';
`~pipelines.ltx.LTXPipelineOutput` or `tuple`
export const metadata = 'undefined';
If `return_dict` is `True`, `~pipelines.ltx.LTXPipelineOutput` is returned, otherwise a `tuple` is returned where the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
[](#diffusers.LTXPipeline.__call__.example)
Examples:
Copied
\>>> import torch
\>>> from diffusers import LTXPipeline
\>>> from diffusers.utils import export\_to\_video
\>>> pipe = LTXPipeline.from\_pretrained("Lightricks/LTX-Video", torch\_dtype=torch.bfloat16)
\>>> pipe.to("cuda")
\>>> prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
\>>> negative\_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
\>>> video = pipe(
... prompt=prompt,
... negative\_prompt=negative\_prompt,
... width=704,
... height=480,
... num\_frames=161,
... num\_inference\_steps=50,
... ).frames\[0\]
\>>> export\_to\_video(video, "output.mp4", fps=24)
#### encode\_prompt
[](#diffusers.LTXPipeline.encode_prompt)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/ltx/pipeline_ltx.py#L256)
( prompt: typing.Union\[str, typing.List\[str\]\]negative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Nonedo\_classifier\_free\_guidance: bool = Truenum\_videos\_per\_prompt: int = 1prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.Tensor\] = Noneprompt\_attention\_mask: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_attention\_mask: typing.Optional\[torch.Tensor\] = Nonemax\_sequence\_length: int = 128device: typing.Optional\[torch.device\] = Nonedtype: typing.Optional\[torch.dtype\] = None )
Parameters
* [](#diffusers.LTXPipeline.encode_prompt.prompt)**prompt** (`str` or `List[str]`, _optional_) β prompt to be encoded
* [](#diffusers.LTXPipeline.encode_prompt.negative_prompt)**negative\_prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
* [](#diffusers.LTXPipeline.encode_prompt.do_classifier_free_guidance)**do\_classifier\_free\_guidance** (`bool`, _optional_, defaults to `True`) β Whether to use classifier free guidance or not.
* [](#diffusers.LTXPipeline.encode_prompt.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
* [](#diffusers.LTXPipeline.encode_prompt.prompt_embeds)**prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.LTXPipeline.encode_prompt.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.LTXPipeline.encode_prompt.device)**device** β (`torch.device`, _optional_): torch device
* [](#diffusers.LTXPipeline.encode_prompt.dtype)**dtype** β (`torch.dtype`, _optional_): torch dtype
Encodes the prompt into text encoder hidden states.
[](#diffusers.LTXImageToVideoPipeline)LTXImageToVideoPipeline
-------------------------------------------------------------
### class diffusers.LTXImageToVideoPipeline
[](#diffusers.LTXImageToVideoPipeline)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py#L162)
( scheduler: FlowMatchEulerDiscreteSchedulervae: AutoencoderKLLTXVideotext\_encoder: T5EncoderModeltokenizer: T5TokenizerFasttransformer: LTXVideoTransformer3DModel )
Parameters
* [](#diffusers.LTXImageToVideoPipeline.transformer)**transformer** ([LTXVideoTransformer3DModel](/docs/diffusers/main/en/api/models/ltx_video_transformer3d#diffusers.LTXVideoTransformer3DModel)) β Conditional Transformer architecture to denoise the encoded video latents.
* [](#diffusers.LTXImageToVideoPipeline.scheduler)**scheduler** ([FlowMatchEulerDiscreteScheduler](/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler)) β A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
* [](#diffusers.LTXImageToVideoPipeline.vae)**vae** ([AutoencoderKLLTXVideo](/docs/diffusers/main/en/api/models/autoencoderkl_ltx_video#diffusers.AutoencoderKLLTXVideo)) β Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
* [](#diffusers.LTXImageToVideoPipeline.text_encoder)**text\_encoder** (`T5EncoderModel`) β [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically the [google/t5-v1\_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
* [](#diffusers.LTXImageToVideoPipeline.tokenizer)**tokenizer** (`CLIPTokenizer`) β Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
* [](#diffusers.LTXImageToVideoPipeline.tokenizer)**tokenizer** (`T5TokenizerFast`) β Second Tokenizer of class [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
Pipeline for image-to-video generation.
Reference: [https://github.com/Lightricks/LTX-Video](https://github.com/Lightricks/LTX-Video)
#### \_\_call\_\_
[](#diffusers.LTXImageToVideoPipeline.__call__)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py#L559)
( image: typing.Union\[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List\[PIL.Image.Image\], typing.List\[numpy.ndarray\], typing.List\[torch.Tensor\]\] = Noneprompt: typing.Union\[str, typing.List\[str\]\] = Nonenegative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Noneheight: int = 512width: int = 704num\_frames: int = 161frame\_rate: int = 25num\_inference\_steps: int = 50timesteps: typing.List\[int\] = Noneguidance\_scale: float = 3num\_videos\_per\_prompt: typing.Optional\[int\] = 1generator: typing.Union\[torch.\_C.Generator, typing.List\[torch.\_C.Generator\], NoneType\] = Nonelatents: typing.Optional\[torch.Tensor\] = Noneprompt\_embeds: typing.Optional\[torch.Tensor\] = Noneprompt\_attention\_mask: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_attention\_mask: typing.Optional\[torch.Tensor\] = Nonedecode\_timestep: typing.Union\[float, typing.List\[float\]\] = 0.0decode\_noise\_scale: typing.Union\[float, typing.List\[float\], NoneType\] = Noneoutput\_type: typing.Optional\[str\] = 'pil'return\_dict: bool = Trueattention\_kwargs: typing.Optional\[typing.Dict\[str, typing.Any\]\] = Nonecallback\_on\_step\_end: typing.Optional\[typing.Callable\[\[int, int, typing.Dict\], NoneType\]\] = Nonecallback\_on\_step\_end\_tensor\_inputs: typing.List\[str\] = \['latents'\]max\_sequence\_length: int = 128 ) β export const metadata = 'undefined';`~pipelines.ltx.LTXPipelineOutput` or `tuple`
Expand 23 parameters
Parameters
* [](#diffusers.LTXImageToVideoPipeline.__call__.image)**image** (`PipelineImageInput`) β The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
* [](#diffusers.LTXImageToVideoPipeline.__call__.prompt)**prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead.
* [](#diffusers.LTXImageToVideoPipeline.__call__.height)**height** (`int`, defaults to `512`) β The height in pixels of the generated image. This is set to 480 by default for the best results.
* [](#diffusers.LTXImageToVideoPipeline.__call__.width)**width** (`int`, defaults to `704`) β The width in pixels of the generated image. This is set to 848 by default for the best results.
* [](#diffusers.LTXImageToVideoPipeline.__call__.num_frames)**num\_frames** (`int`, defaults to `161`) β The number of video frames to generate
* [](#diffusers.LTXImageToVideoPipeline.__call__.num_inference_steps)**num\_inference\_steps** (`int`, _optional_, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
* [](#diffusers.LTXImageToVideoPipeline.__call__.timesteps)**timesteps** (`List[int]`, _optional_) β Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order.
* [](#diffusers.LTXImageToVideoPipeline.__call__.guidance_scale)**guidance\_scale** (`float`, defaults to `3` ) β Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
* [](#diffusers.LTXImageToVideoPipeline.__call__.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β The number of videos to generate per prompt.
* [](#diffusers.LTXImageToVideoPipeline.__call__.generator)**generator** (`torch.Generator` or `List[torch.Generator]`, _optional_) β One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic.
* [](#diffusers.LTXImageToVideoPipeline.__call__.latents)**latents** (`torch.Tensor`, _optional_) β Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`.
* [](#diffusers.LTXImageToVideoPipeline.__call__.prompt_embeds)**prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.LTXImageToVideoPipeline.__call__.prompt_attention_mask)**prompt\_attention\_mask** (`torch.Tensor`, _optional_) β Pre-generated attention mask for text embeddings.
* [](#diffusers.LTXImageToVideoPipeline.__call__.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.FloatTensor`, _optional_) β Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.LTXImageToVideoPipeline.__call__.negative_prompt_attention_mask)**negative\_prompt\_attention\_mask** (`torch.FloatTensor`, _optional_) β Pre-generated attention mask for negative text embeddings.
* [](#diffusers.LTXImageToVideoPipeline.__call__.decode_timestep)**decode\_timestep** (`float`, defaults to `0.0`) β The timestep at which generated video is decoded.
* [](#diffusers.LTXImageToVideoPipeline.__call__.decode_noise_scale)**decode\_noise\_scale** (`float`, defaults to `None`) β The interpolation factor between random noise and denoised latents at the decode timestep.
* [](#diffusers.LTXImageToVideoPipeline.__call__.output_type)**output\_type** (`str`, _optional_, defaults to `"pil"`) β The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
* [](#diffusers.LTXImageToVideoPipeline.__call__.return_dict)**return\_dict** (`bool`, _optional_, defaults to `True`) β Whether or not to return a `~pipelines.ltx.LTXPipelineOutput` instead of a plain tuple.
* [](#diffusers.LTXImageToVideoPipeline.__call__.attention_kwargs)**attention\_kwargs** (`dict`, _optional_) β A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention\_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
* [](#diffusers.LTXImageToVideoPipeline.__call__.callback_on_step_end)**callback\_on\_step\_end** (`Callable`, _optional_) β A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
* [](#diffusers.LTXImageToVideoPipeline.__call__.callback_on_step_end_tensor_inputs)**callback\_on\_step\_end\_tensor\_inputs** (`List`, _optional_) β The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
* [](#diffusers.LTXImageToVideoPipeline.__call__.max_sequence_length)**max\_sequence\_length** (`int` defaults to `128` ) β Maximum sequence length to use with the `prompt`.
Returns
export const metadata = 'undefined';
`~pipelines.ltx.LTXPipelineOutput` or `tuple`
export const metadata = 'undefined';
If `return_dict` is `True`, `~pipelines.ltx.LTXPipelineOutput` is returned, otherwise a `tuple` is returned where the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
[](#diffusers.LTXImageToVideoPipeline.__call__.example)
Examples:
Copied
\>>> import torch
\>>> from diffusers import LTXImageToVideoPipeline
\>>> from diffusers.utils import export\_to\_video, load\_image
\>>> pipe = LTXImageToVideoPipeline.from\_pretrained("Lightricks/LTX-Video", torch\_dtype=torch.bfloat16)
\>>> pipe.to("cuda")
\>>> image = load\_image(
... "https://huggingface.co/datasets/a-r-r-o-w/tiny-meme-dataset-captioned/resolve/main/images/8.png"
... )
\>>> prompt = "A young girl stands calmly in the foreground, looking directly at the camera, as a house fire rages in the background. Flames engulf the structure, with smoke billowing into the air. Firefighters in protective gear rush to the scene, a fire truck labeled '38' visible behind them. The girl's neutral expression contrasts sharply with the chaos of the fire, creating a poignant and emotionally charged scene."
\>>> negative\_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
\>>> video = pipe(
... image=image,
... prompt=prompt,
... negative\_prompt=negative\_prompt,
... width=704,
... height=480,
... num\_frames=161,
... num\_inference\_steps=50,
... ).frames\[0\]
\>>> export\_to\_video(video, "output.mp4", fps=24)
#### encode\_prompt
[](#diffusers.LTXImageToVideoPipeline.encode_prompt)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py#L279)
( prompt: typing.Union\[str, typing.List\[str\]\]negative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Nonedo\_classifier\_free\_guidance: bool = Truenum\_videos\_per\_prompt: int = 1prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.Tensor\] = Noneprompt\_attention\_mask: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_attention\_mask: typing.Optional\[torch.Tensor\] = Nonemax\_sequence\_length: int = 128device: typing.Optional\[torch.device\] = Nonedtype: typing.Optional\[torch.dtype\] = None )
Parameters
* [](#diffusers.LTXImageToVideoPipeline.encode_prompt.prompt)**prompt** (`str` or `List[str]`, _optional_) β prompt to be encoded
* [](#diffusers.LTXImageToVideoPipeline.encode_prompt.negative_prompt)**negative\_prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
* [](#diffusers.LTXImageToVideoPipeline.encode_prompt.do_classifier_free_guidance)**do\_classifier\_free\_guidance** (`bool`, _optional_, defaults to `True`) β Whether to use classifier free guidance or not.
* [](#diffusers.LTXImageToVideoPipeline.encode_prompt.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
* [](#diffusers.LTXImageToVideoPipeline.encode_prompt.prompt_embeds)**prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.LTXImageToVideoPipeline.encode_prompt.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.LTXImageToVideoPipeline.encode_prompt.device)**device** β (`torch.device`, _optional_): torch device
* [](#diffusers.LTXImageToVideoPipeline.encode_prompt.dtype)**dtype** β (`torch.dtype`, _optional_): torch dtype
Encodes the prompt into text encoder hidden states.
[](#diffusers.pipelines.ltx.pipeline_output.LTXPipelineOutput)LTXPipelineOutput
-------------------------------------------------------------------------------
### class diffusers.pipelines.ltx.pipeline\_output.LTXPipelineOutput
[](#diffusers.pipelines.ltx.pipeline_output.LTXPipelineOutput)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/ltx/pipeline_output.py#L8)
( frames: Tensor )
Parameters
* [](#diffusers.pipelines.ltx.pipeline_output.LTXPipelineOutput.frames)**frames** (`torch.Tensor`, `np.ndarray`, or List\[List\[PIL.Image.Image\]\]) β List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape `(batch_size, num_frames, channels, height, width)`.
Output class for LTX pipelines.
[< \> Update on GitHub](https://github.com/huggingface/diffusers/blob/main/docs/source/en/api/pipelines/ltx_video.md)
[βLEDITS++](/docs/diffusers/main/en/api/pipelines/ledits_pp) [Lumina 2.0β](/docs/diffusers/main/en/api/pipelines/lumina2) |