import gradio as gr from urllib.parse import urlparse import requests import time import os from utils.gradio_helpers import parse_outputs, process_outputs inputs = [] inputs.append(gr.Video( label="Mp4" )) inputs.append(gr.Dropdown( choices=[2, 4, 8, 16, 32], label="framerate_multiplier", info='''Determines how many intermediate frames to generate between original frames. E.g., a value of 2 will double the frame rate, and 4 will quadruple it, etc.''', value="2" )) inputs.append(gr.Checkbox( label="Keep Original Duration", info='''Should the enhanced video retain the original duration? If set to `True`, the model will adjust the frame rate to maintain the video's original duration after adding interpolated frames. If set to `False`, the frame rate will be set based on `custom_fps`.''', value=True )) inputs.append(gr.Slider( label="Custom Fps", info='''Set `keep_original_duration` to `False` to use this! Desired frame rate (fps) for the enhanced video. This will only be considered if `keep_original_duration` is set to `False`.''', value=None, minimum=1, maximum=240 )) names = ['mp4', 'framerate_multiplier', 'keep_original_duration', 'custom_fps'] outputs = [] outputs.append(gr.Video()) outputs.append(gr.Video()) outputs.append(gr.Video()) expected_outputs = len(outputs) def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)): headers = {'Content-Type': 'application/json'} payload = {"input": {}} base_url = "http://0.0.0.0:7860" for i, key in enumerate(names): value = args[i] if value and (os.path.exists(str(value))): value = f"{base_url}/file=" + value if value is not None and value != "": payload["input"][key] = value response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload) if response.status_code == 201: follow_up_url = response.json()["urls"]["get"] response = requests.get(follow_up_url, headers=headers) while response.json()["status"] != "succeeded": if response.json()["status"] == "failed": raise gr.Error("The submission failed!") response = requests.get(follow_up_url, headers=headers) time.sleep(1) if response.status_code == 200: json_response = response.json() #If the output component is JSON return the entire output response if(outputs[0].get_config()["name"] == "json"): return json_response["output"] predict_outputs = parse_outputs(json_response["output"]) processed_outputs = process_outputs(predict_outputs) difference_outputs = expected_outputs - len(processed_outputs) # If less outputs than expected, hide the extra ones if difference_outputs > 0: extra_outputs = [gr.update(visible=False)] * difference_outputs processed_outputs.extend(extra_outputs) # If more outputs than expected, cap the outputs to the expected number elif difference_outputs < 0: processed_outputs = processed_outputs[:difference_outputs] return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0] else: if(response.status_code == 409): raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.") raise gr.Error(f"The submission failed! Error: {response.status_code}") title = "Demo for st-mfnet cog image by zsxkib" model_description = "📽️ Increase Framerate 🎬 ST-MFNet: A Spatio-Temporal Multi-Flow Network for Frame Interpolation" app = gr.Interface( fn=predict, inputs=inputs, outputs=outputs, title=title, description=model_description, allow_flagging="never", ) app.launch(share=True)