File size: 11,659 Bytes
c8970fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import gradio as gr
import subprocess
import os
import tempfile
import shutil
from pathlib import Path
import torch
import logging

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Constants
DEFAULT_CONFIG_PATH = "configs/inference.yaml"
DEFAULT_INPUT_FILE = "examples/infer_samples.txt"
OUTPUT_DIR = Path("demo_out/gradio_outputs")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)

def generate_avatar_video(
    reference_image,
    audio_file, 
    text_prompt,
    seed=42,
    num_steps=50,
    guidance_scale=4.5,
    audio_scale=None,
    overlap_frames=13,
    fps=25,
    silence_duration=0.3,
    resolution="720p",
    progress=gr.Progress()
):
    """Generate an avatar video using OmniAvatar
    
    Args:
        reference_image: Path to reference avatar image
        audio_file: Path to audio file for lip sync
        text_prompt: Text description of the video to generate
        seed: Random seed for generation
        num_steps: Number of inference steps
        guidance_scale: Classifier-free guidance scale
        audio_scale: Audio guidance scale (uses guidance_scale if None)
        overlap_frames: Number of overlapping frames between chunks
        fps: Frames per second
        silence_duration: Duration of silence to add before/after audio
        resolution: Output resolution ("480p" or "720p")
        progress: Gradio progress callback
        
    Returns:
        str: Path to generated video file
    """
    
    try:
        progress(0.1, desc="Preparing inputs")
        
        # Create temporary directory for this generation
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_path = Path(temp_dir)
            
            # Copy input files to temp directory
            temp_image = temp_path / "input_image.jpeg"
            temp_audio = temp_path / "input_audio.mp3"
            shutil.copy(reference_image, temp_image)
            shutil.copy(audio_file, temp_audio)
            
            # Create input file for inference script
            input_file = temp_path / "input.txt"
            # Format: prompt@@image_path@@audio_path
            with open(input_file, 'w') as f:
                f.write(f"{text_prompt}@@{temp_image}@@{temp_audio}\n")
            
            progress(0.2, desc="Configuring generation parameters")
            
            # Determine max_hw based on resolution
            max_hw = 720 if resolution == "480p" else 1280
            
            # Build command to run inference script
            cmd = [
                "torchrun",
                "--nproc_per_node=1",
                "scripts/inference.py",
                "--config", DEFAULT_CONFIG_PATH,
                "--input_file", str(input_file),
                "-hp", f"seed={seed},num_steps={num_steps},guidance_scale={guidance_scale},"
                      f"overlap_frame={overlap_frames},fps={fps},silence_duration_s={silence_duration},"
                      f"max_hw={max_hw},use_audio=True,i2v=True"
            ]
            
            # Add audio scale if specified
            if audio_scale is not None:
                cmd[-1] += f",audio_scale={audio_scale}"
            
            progress(0.3, desc="Running OmniAvatar generation")
            logger.info(f"Running command: {' '.join(cmd)}")
            
            # Run the inference script
            env = os.environ.copy()
            env['CUDA_VISIBLE_DEVICES'] = '0'  # Use first GPU
            
            process = subprocess.Popen(
                cmd,
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                text=True,
                env=env
            )
            
            # Monitor progress (simplified - in reality you'd parse the output)
            stdout_lines = []
            stderr_lines = []
            
            while True:
                output = process.stdout.readline()
                if output:
                    stdout_lines.append(output.strip())
                    logger.info(output.strip())
                    
                    # Update progress based on output
                    if "Starting video generation" in output:
                        progress(0.5, desc="Generating video frames")
                    elif "[1/" in output:  # First chunk
                        progress(0.6, desc="Processing video chunks")
                    elif "Saving video" in output:
                        progress(0.9, desc="Finalizing video")
                
                if process.poll() is not None:
                    break
            
            # Get any remaining output
            remaining_stdout, remaining_stderr = process.communicate()
            if remaining_stdout:
                stdout_lines.extend(remaining_stdout.strip().split('\n'))
            if remaining_stderr:
                stderr_lines.extend(remaining_stderr.strip().split('\n'))
            
            if process.returncode != 0:
                error_msg = '\n'.join(stderr_lines)
                logger.error(f"Inference failed with return code {process.returncode}")
                logger.error(f"Error output: {error_msg}")
                raise gr.Error(f"Video generation failed: {error_msg}")
            
            progress(0.95, desc="Retrieving generated video")
            
            # Find the generated video file
            # The inference script saves to demo_out/{exp_name}/res_{input_file_name}_...
            # We need to find the most recent video file
            generated_videos = list(Path("demo_out").rglob("result_000.mp4"))
            if not generated_videos:
                raise gr.Error("No video file was generated")
            
            # Get the most recent video
            latest_video = max(generated_videos, key=lambda p: p.stat().st_mtime)
            
            # Copy to output directory with unique name
            output_filename = f"avatar_video_{os.getpid()}_{torch.randint(1000, 9999, (1,)).item()}.mp4"
            output_path = OUTPUT_DIR / output_filename
            shutil.copy(latest_video, output_path)
            
            progress(1.0, desc="Generation complete")
            logger.info(f"Video saved to: {output_path}")
            
            return str(output_path)
            
    except Exception as e:
        logger.error(f"Error generating video: {str(e)}")
        raise gr.Error(f"Error generating video: {str(e)}")

# Create the Gradio interface
with gr.Blocks(title="OmniAvatar - Lipsynced Avatar Video Generation") as app:
    gr.Markdown("""
    # 🎭 OmniAvatar - Lipsynced Avatar Video Generation
    
    Generate videos with lipsynced avatars using a reference image and audio file.
    Based on Wan2.1 with OmniAvatar enhancements for audio-driven avatar animation.
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            # Input components
            reference_image = gr.Image(
                label="Reference Avatar Image",
                type="filepath",
                elem_id="reference_image"
            )
            
            audio_file = gr.Audio(
                label="Speech Audio File",
                type="filepath",
                elem_id="audio_file"
            )
            
            text_prompt = gr.Textbox(
                label="Video Description",
                placeholder="Describe the video scene and actions...",
                lines=3,
                value="A person speaking naturally with subtle facial expressions"
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=2147483647,
                        step=1,
                        value=42
                    )
                    
                    resolution = gr.Radio(
                        label="Resolution",
                        choices=["480p", "720p"],
                        value="720p"
                    )
                
                with gr.Row():
                    num_steps = gr.Slider(
                        label="Inference Steps",
                        minimum=10,
                        maximum=100,
                        step=5,
                        value=50
                    )
                    
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1.0,
                        maximum=10.0,
                        step=0.5,
                        value=4.5
                    )
                
                with gr.Row():
                    audio_scale = gr.Slider(
                        label="Audio Scale (leave 0 to use guidance scale)",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.5,
                        value=0.0
                    )
                    
                    overlap_frames = gr.Slider(
                        label="Overlap Frames",
                        minimum=1,
                        maximum=25,
                        step=4,
                        value=13,
                        info="Must be 1 + 4*n"
                    )
                
                with gr.Row():
                    fps = gr.Slider(
                        label="FPS",
                        minimum=10,
                        maximum=30,
                        step=1,
                        value=25
                    )
                    
                    silence_duration = gr.Slider(
                        label="Silence Duration (s)",
                        minimum=0.0,
                        maximum=2.0,
                        step=0.1,
                        value=0.3
                    )
            
            generate_btn = gr.Button(
                "🎬 Generate Avatar Video",
                variant="primary"
            )
        
        with gr.Column(scale=1):
            # Output component
            output_video = gr.Video(
                label="Generated Avatar Video",
                elem_id="output_video"
            )
            
            # Examples
            gr.Examples(
                examples=[
                    [
                        "examples/images/0000.jpeg",
                        "examples/audios/0000.MP3",
                        "A professional woman giving a presentation with confident gestures"
                    ],
                ],
                inputs=[reference_image, audio_file, text_prompt],
                label="Example Inputs"
            )
    
    # Connect the generate button
    generate_btn.click(
        fn=generate_avatar_video,
        inputs=[
            reference_image,
            audio_file,
            text_prompt,
            seed,
            num_steps,
            guidance_scale,
            audio_scale,
            overlap_frames,
            fps,
            silence_duration,
            resolution
        ],
        outputs=output_video
    )
    
    gr.Markdown("""
    ## πŸ“ Notes
    - The reference image should be a clear frontal view of the person
    - Audio should be clear speech without background music
    - Generation may take several minutes depending on video length
    - For best results, use high-quality input images and audio
    """)

# Launch the app
if __name__ == "__main__":
    app.launch(share=True)