|
from typing import List, Optional |
|
import numpy as np |
|
import torch |
|
import time |
|
import copy |
|
|
|
from einops import rearrange |
|
from utils.wan_wrapper import WanDiffusionWrapper, WanVAEWrapper |
|
from utils.visualize import process_video |
|
import torch.nn.functional as F |
|
from demo_utils.constant import ZERO_VAE_CACHE |
|
from tqdm import tqdm |
|
|
|
def get_current_action(mode="universal"): |
|
|
|
CAM_VALUE = 0.1 |
|
if mode == 'universal': |
|
print() |
|
print('-'*30) |
|
print("PRESS [I, K, J, L, U] FOR CAMERA TRANSFORM\n (I: up, K: down, J: left, L: right, U: no move)") |
|
print("PRESS [W, S, A, D, Q] FOR MOVEMENT\n (W: forward, S: back, A: left, D: right, Q: no move)") |
|
print('-'*30) |
|
CAMERA_VALUE_MAP = { |
|
"i": [CAM_VALUE, 0], |
|
"k": [-CAM_VALUE, 0], |
|
"j": [0, -CAM_VALUE], |
|
"l": [0, CAM_VALUE], |
|
"u": [0, 0] |
|
} |
|
KEYBOARD_IDX = { |
|
"w": [1, 0, 0, 0], "s": [0, 1, 0, 0], "a": [0, 0, 1, 0], "d": [0, 0, 0, 1], |
|
"q": [0, 0, 0, 0] |
|
} |
|
flag = 0 |
|
while flag != 1: |
|
try: |
|
idx_mouse = input('Please input the mouse action (e.g. `U`):\n').strip().lower() |
|
idx_keyboard = input('Please input the keyboard action (e.g. `W`):\n').strip().lower() |
|
if idx_mouse in CAMERA_VALUE_MAP.keys() and idx_keyboard in KEYBOARD_IDX.keys(): |
|
flag = 1 |
|
except: |
|
pass |
|
mouse_cond = torch.tensor(CAMERA_VALUE_MAP[idx_mouse]).cuda() |
|
keyboard_cond = torch.tensor(KEYBOARD_IDX[idx_keyboard]).cuda() |
|
elif mode == 'gta_drive': |
|
print() |
|
print('-'*30) |
|
print("PRESS [W, S, A, D, Q] FOR MOVEMENT\n (W: forward, S: back, A: left, D: right, Q: no move)") |
|
print('-'*30) |
|
CAMERA_VALUE_MAP = { |
|
"a": [0, -CAM_VALUE], |
|
"d": [0, CAM_VALUE], |
|
"q": [0, 0] |
|
} |
|
KEYBOARD_IDX = { |
|
"w": [1, 0], "s": [0, 1], |
|
"q": [0, 0] |
|
} |
|
flag = 0 |
|
while flag != 1: |
|
try: |
|
indexes = input('Please input the actions (split with ` `):\n(e.g. `W` for forward, `W A` for forward and left)\n').strip().lower().split(' ') |
|
idx_mouse = [] |
|
idx_keyboard = [] |
|
for i in indexes: |
|
if i in CAMERA_VALUE_MAP.keys(): |
|
idx_mouse += [i] |
|
elif i in KEYBOARD_IDX.keys(): |
|
idx_keyboard += [i] |
|
if len(idx_mouse) == 0: |
|
idx_mouse += ['q'] |
|
if len(idx_keyboard) == 0: |
|
idx_keyboard += ['q'] |
|
assert idx_mouse in [['a'], ['d'], ['q']] and idx_keyboard in [['q'], ['w'], ['s']] |
|
flag = 1 |
|
except: |
|
pass |
|
mouse_cond = torch.tensor(CAMERA_VALUE_MAP[idx_mouse[0]]).cuda() |
|
keyboard_cond = torch.tensor(KEYBOARD_IDX[idx_keyboard[0]]).cuda() |
|
elif mode == 'templerun': |
|
print() |
|
print('-'*30) |
|
print("PRESS [W, S, A, D, Z, C, Q] FOR ACTIONS\n (W: jump, S: slide, A: left side, D: right side, Z: turn left, C: turn right, Q: no move)") |
|
print('-'*30) |
|
KEYBOARD_IDX = { |
|
"w": [0, 1, 0, 0, 0, 0, 0], "s": [0, 0, 1, 0, 0, 0, 0], |
|
"a": [0, 0, 0, 0, 0, 1, 0], "d": [0, 0, 0, 0, 0, 0, 1], |
|
"z": [0, 0, 0, 1, 0, 0, 0], "c": [0, 0, 0, 0, 1, 0, 0], |
|
"q": [1, 0, 0, 0, 0, 0, 0] |
|
} |
|
flag = 0 |
|
while flag != 1: |
|
try: |
|
idx_keyboard = input('Please input the action: \n(e.g. `W` for forward, `Z` for turning left)\n').strip().lower() |
|
if idx_keyboard in KEYBOARD_IDX.keys(): |
|
flag = 1 |
|
except: |
|
pass |
|
keyboard_cond = torch.tensor(KEYBOARD_IDX[idx_keyboard]).cuda() |
|
|
|
if mode != 'templerun': |
|
return { |
|
"mouse": mouse_cond, |
|
"keyboard": keyboard_cond |
|
} |
|
return { |
|
"keyboard": keyboard_cond |
|
} |
|
|
|
def cond_current(conditional_dict, current_start_frame, num_frame_per_block, replace=None, mode='universal'): |
|
|
|
new_cond = {} |
|
|
|
new_cond["cond_concat"] = conditional_dict["cond_concat"][:, :, current_start_frame: current_start_frame + num_frame_per_block] |
|
new_cond["visual_context"] = conditional_dict["visual_context"] |
|
if replace != None: |
|
if current_start_frame == 0: |
|
last_frame_num = 1 + 4 * (num_frame_per_block - 1) |
|
else: |
|
last_frame_num = 4 * num_frame_per_block |
|
final_frame = 1 + 4 * (current_start_frame + num_frame_per_block-1) |
|
if mode != 'templerun': |
|
conditional_dict["mouse_cond"][:, -last_frame_num + final_frame: final_frame] = replace['mouse'][None, None, :].repeat(1, last_frame_num, 1) |
|
conditional_dict["keyboard_cond"][:, -last_frame_num + final_frame: final_frame] = replace['keyboard'][None, None, :].repeat(1, last_frame_num, 1) |
|
if mode != 'templerun': |
|
new_cond["mouse_cond"] = conditional_dict["mouse_cond"][:, : 1 + 4 * (current_start_frame + num_frame_per_block - 1)] |
|
new_cond["keyboard_cond"] = conditional_dict["keyboard_cond"][:, : 1 + 4 * (current_start_frame + num_frame_per_block - 1)] |
|
|
|
if replace != None: |
|
return new_cond, conditional_dict |
|
else: |
|
return new_cond |
|
|
|
class CausalInferencePipeline(torch.nn.Module): |
|
def __init__( |
|
self, |
|
args, |
|
device="cuda", |
|
generator=None, |
|
vae_decoder=None, |
|
): |
|
super().__init__() |
|
|
|
self.generator = WanDiffusionWrapper( |
|
**getattr(args, "model_kwargs", {}), is_causal=True) if generator is None else generator |
|
|
|
self.vae_decoder = vae_decoder |
|
|
|
self.scheduler = self.generator.get_scheduler() |
|
self.denoising_step_list = torch.tensor( |
|
args.denoising_step_list, dtype=torch.long) |
|
if args.warp_denoising_step: |
|
timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32))) |
|
self.denoising_step_list = timesteps[1000 - self.denoising_step_list] |
|
|
|
self.num_transformer_blocks = 30 |
|
self.frame_seq_length = 880 |
|
|
|
self.kv_cache1 = None |
|
self.kv_cache_mouse = None |
|
self.kv_cache_keyboard = None |
|
self.args = args |
|
self.num_frame_per_block = getattr(args, "num_frame_per_block", 1) |
|
self.local_attn_size = self.generator.model.local_attn_size |
|
assert self.local_attn_size != -1 |
|
print(f"KV inference with {self.num_frame_per_block} frames per block") |
|
|
|
if self.num_frame_per_block > 1: |
|
self.generator.model.num_frame_per_block = self.num_frame_per_block |
|
|
|
def inference( |
|
self, |
|
noise: torch.Tensor, |
|
conditional_dict, |
|
initial_latent = None, |
|
return_latents = False, |
|
mode = 'universal', |
|
profile = False, |
|
) -> torch.Tensor: |
|
""" |
|
Perform inference on the given noise and text prompts. |
|
Inputs: |
|
noise (torch.Tensor): The input noise tensor of shape |
|
(batch_size, num_output_frames, num_channels, height, width). |
|
text_prompts (List[str]): The list of text prompts. |
|
initial_latent (torch.Tensor): The initial latent tensor of shape |
|
(batch_size, num_input_frames, num_channels, height, width). |
|
If num_input_frames is 1, perform image to video. |
|
If num_input_frames is greater than 1, perform video extension. |
|
return_latents (bool): Whether to return the latents. |
|
Outputs: |
|
video (torch.Tensor): The generated video tensor of shape |
|
(batch_size, num_output_frames, num_channels, height, width). |
|
It is normalized to be in the range [0, 1]. |
|
""" |
|
|
|
assert noise.shape[1] == 16 |
|
batch_size, num_channels, num_frames, height, width = noise.shape |
|
|
|
assert num_frames % self.num_frame_per_block == 0 |
|
num_blocks = num_frames // self.num_frame_per_block |
|
|
|
num_input_frames = initial_latent.shape[2] if initial_latent is not None else 0 |
|
num_output_frames = num_frames + num_input_frames |
|
|
|
output = torch.zeros( |
|
[batch_size, num_channels, num_output_frames, height, width], |
|
device=noise.device, |
|
dtype=noise.dtype |
|
) |
|
videos = [] |
|
vae_cache = copy.deepcopy(ZERO_VAE_CACHE) |
|
for j in range(len(vae_cache)): |
|
vae_cache[j] = None |
|
|
|
self.kv_cache1 = self.kv_cache_keyboard = self.kv_cache_mouse = self.crossattn_cache=None |
|
|
|
if self.kv_cache1 is None: |
|
self._initialize_kv_cache( |
|
batch_size=batch_size, |
|
dtype=noise.dtype, |
|
device=noise.device |
|
) |
|
self._initialize_kv_cache_mouse_and_keyboard( |
|
batch_size=batch_size, |
|
dtype=noise.dtype, |
|
device=noise.device |
|
) |
|
|
|
self._initialize_crossattn_cache( |
|
batch_size=batch_size, |
|
dtype=noise.dtype, |
|
device=noise.device |
|
) |
|
else: |
|
|
|
for block_index in range(self.num_transformer_blocks): |
|
self.crossattn_cache[block_index]["is_init"] = False |
|
|
|
for block_index in range(len(self.kv_cache1)): |
|
self.kv_cache1[block_index]["global_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
self.kv_cache1[block_index]["local_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
self.kv_cache_mouse[block_index]["global_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
self.kv_cache_mouse[block_index]["local_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
self.kv_cache_keyboard[block_index]["global_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
self.kv_cache_keyboard[block_index]["local_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
|
|
current_start_frame = 0 |
|
if initial_latent is not None: |
|
timestep = torch.ones([batch_size, 1], device=noise.device, dtype=torch.int64) * 0 |
|
|
|
assert num_input_frames % self.num_frame_per_block == 0 |
|
num_input_blocks = num_input_frames // self.num_frame_per_block |
|
|
|
for _ in range(num_input_blocks): |
|
current_ref_latents = \ |
|
initial_latent[:, :, current_start_frame:current_start_frame + self.num_frame_per_block] |
|
output[:, :, current_start_frame:current_start_frame + self.num_frame_per_block] = current_ref_latents |
|
|
|
self.generator( |
|
noisy_image_or_video=current_ref_latents, |
|
conditional_dict=cond_current(conditional_dict, current_start_frame, self.num_frame_per_block, mode=mode), |
|
timestep=timestep * 0, |
|
kv_cache=self.kv_cache1, |
|
kv_cache_mouse=self.kv_cache_mouse, |
|
kv_cache_keyboard=self.kv_cache_keyboard, |
|
crossattn_cache=self.crossattn_cache, |
|
current_start=current_start_frame * self.frame_seq_length, |
|
) |
|
current_start_frame += self.num_frame_per_block |
|
|
|
|
|
|
|
all_num_frames = [self.num_frame_per_block] * num_blocks |
|
if profile: |
|
diffusion_start = torch.cuda.Event(enable_timing=True) |
|
diffusion_end = torch.cuda.Event(enable_timing=True) |
|
for current_num_frames in tqdm(all_num_frames): |
|
|
|
noisy_input = noise[ |
|
:, :, current_start_frame - num_input_frames:current_start_frame + current_num_frames - num_input_frames] |
|
|
|
|
|
if profile: |
|
torch.cuda.synchronize() |
|
diffusion_start.record() |
|
for index, current_timestep in enumerate(self.denoising_step_list): |
|
|
|
timestep = torch.ones( |
|
[batch_size, current_num_frames], |
|
device=noise.device, |
|
dtype=torch.int64) * current_timestep |
|
|
|
if index < len(self.denoising_step_list) - 1: |
|
_, denoised_pred = self.generator( |
|
noisy_image_or_video=noisy_input, |
|
conditional_dict=cond_current(conditional_dict, current_start_frame, self.num_frame_per_block, mode=mode), |
|
timestep=timestep, |
|
kv_cache=self.kv_cache1, |
|
kv_cache_mouse=self.kv_cache_mouse, |
|
kv_cache_keyboard=self.kv_cache_keyboard, |
|
crossattn_cache=self.crossattn_cache, |
|
current_start=current_start_frame * self.frame_seq_length |
|
) |
|
next_timestep = self.denoising_step_list[index + 1] |
|
noisy_input = self.scheduler.add_noise( |
|
rearrange(denoised_pred, 'b c f h w -> (b f) c h w'), |
|
torch.randn_like(rearrange(denoised_pred, 'b c f h w -> (b f) c h w')), |
|
next_timestep * torch.ones( |
|
[batch_size * current_num_frames], device=noise.device, dtype=torch.long) |
|
) |
|
noisy_input = rearrange(noisy_input, '(b f) c h w -> b c f h w', b=denoised_pred.shape[0]) |
|
else: |
|
|
|
_, denoised_pred = self.generator( |
|
noisy_image_or_video=noisy_input, |
|
conditional_dict=cond_current(conditional_dict, current_start_frame, self.num_frame_per_block, mode=mode), |
|
timestep=timestep, |
|
kv_cache=self.kv_cache1, |
|
kv_cache_mouse=self.kv_cache_mouse, |
|
kv_cache_keyboard=self.kv_cache_keyboard, |
|
crossattn_cache=self.crossattn_cache, |
|
current_start=current_start_frame * self.frame_seq_length |
|
) |
|
|
|
|
|
output[:, :, current_start_frame:current_start_frame + current_num_frames] = denoised_pred |
|
|
|
|
|
context_timestep = torch.ones_like(timestep) * self.args.context_noise |
|
|
|
self.generator( |
|
noisy_image_or_video=denoised_pred, |
|
conditional_dict=cond_current(conditional_dict, current_start_frame, self.num_frame_per_block, mode=mode), |
|
timestep=context_timestep, |
|
kv_cache=self.kv_cache1, |
|
kv_cache_mouse=self.kv_cache_mouse, |
|
kv_cache_keyboard=self.kv_cache_keyboard, |
|
crossattn_cache=self.crossattn_cache, |
|
current_start=current_start_frame * self.frame_seq_length, |
|
) |
|
|
|
|
|
current_start_frame += current_num_frames |
|
|
|
denoised_pred = denoised_pred.transpose(1,2) |
|
video, vae_cache = self.vae_decoder(denoised_pred.half(), *vae_cache) |
|
videos += [video] |
|
|
|
if profile: |
|
torch.cuda.synchronize() |
|
diffusion_end.record() |
|
diffusion_time = diffusion_start.elapsed_time(diffusion_end) |
|
print(f"diffusion_time: {diffusion_time}", flush=True) |
|
fps = video.shape[1]*1000/ diffusion_time |
|
print(f" - FPS: {fps:.2f}") |
|
|
|
if return_latents: |
|
return output |
|
else: |
|
return videos |
|
|
|
def _initialize_kv_cache(self, batch_size, dtype, device): |
|
""" |
|
Initialize a Per-GPU KV cache for the Wan model. |
|
""" |
|
kv_cache1 = [] |
|
if self.local_attn_size != -1: |
|
|
|
kv_cache_size = self.local_attn_size * self.frame_seq_length |
|
else: |
|
|
|
kv_cache_size = 15 * 1 * self.frame_seq_length |
|
|
|
for _ in range(self.num_transformer_blocks): |
|
kv_cache1.append({ |
|
"k": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device), |
|
"v": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device), |
|
"global_end_index": torch.tensor([0], dtype=torch.long, device=device), |
|
"local_end_index": torch.tensor([0], dtype=torch.long, device=device) |
|
}) |
|
|
|
self.kv_cache1 = kv_cache1 |
|
|
|
def _initialize_kv_cache_mouse_and_keyboard(self, batch_size, dtype, device): |
|
""" |
|
Initialize a Per-GPU KV cache for the Wan model. |
|
""" |
|
kv_cache_mouse = [] |
|
kv_cache_keyboard = [] |
|
if self.local_attn_size != -1: |
|
kv_cache_size = self.local_attn_size |
|
else: |
|
kv_cache_size = 15 * 1 |
|
for _ in range(self.num_transformer_blocks): |
|
kv_cache_keyboard.append({ |
|
"k": torch.zeros([batch_size, kv_cache_size, 16, 64], dtype=dtype, device=device), |
|
"v": torch.zeros([batch_size, kv_cache_size, 16, 64], dtype=dtype, device=device), |
|
"global_end_index": torch.tensor([0], dtype=torch.long, device=device), |
|
"local_end_index": torch.tensor([0], dtype=torch.long, device=device) |
|
}) |
|
kv_cache_mouse.append({ |
|
"k": torch.zeros([batch_size * self.frame_seq_length, kv_cache_size, 16, 64], dtype=dtype, device=device), |
|
"v": torch.zeros([batch_size * self.frame_seq_length, kv_cache_size, 16, 64], dtype=dtype, device=device), |
|
"global_end_index": torch.tensor([0], dtype=torch.long, device=device), |
|
"local_end_index": torch.tensor([0], dtype=torch.long, device=device) |
|
}) |
|
self.kv_cache_keyboard = kv_cache_keyboard |
|
self.kv_cache_mouse = kv_cache_mouse |
|
|
|
|
|
|
|
def _initialize_crossattn_cache(self, batch_size, dtype, device): |
|
""" |
|
Initialize a Per-GPU cross-attention cache for the Wan model. |
|
""" |
|
crossattn_cache = [] |
|
|
|
for _ in range(self.num_transformer_blocks): |
|
crossattn_cache.append({ |
|
"k": torch.zeros([batch_size, 257, 12, 128], dtype=dtype, device=device), |
|
"v": torch.zeros([batch_size, 257, 12, 128], dtype=dtype, device=device), |
|
"is_init": False |
|
}) |
|
self.crossattn_cache = crossattn_cache |
|
|
|
|
|
class CausalInferenceStreamingPipeline(torch.nn.Module): |
|
def __init__( |
|
self, |
|
args, |
|
device="cuda", |
|
vae_decoder=None, |
|
generator=None, |
|
): |
|
super().__init__() |
|
|
|
self.generator = WanDiffusionWrapper( |
|
**getattr(args, "model_kwargs", {}), is_causal=True) if generator is None else generator |
|
self.vae_decoder = vae_decoder |
|
|
|
|
|
self.scheduler = self.generator.get_scheduler() |
|
self.denoising_step_list = torch.tensor( |
|
args.denoising_step_list, dtype=torch.long) |
|
if args.warp_denoising_step: |
|
timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32))) |
|
self.denoising_step_list = timesteps[1000 - self.denoising_step_list] |
|
|
|
self.num_transformer_blocks = 30 |
|
self.frame_seq_length = 880 |
|
|
|
self.kv_cache1 = None |
|
self.kv_cache_mouse = None |
|
self.kv_cache_keyboard = None |
|
self.args = args |
|
self.num_frame_per_block = getattr(args, "num_frame_per_block", 1) |
|
self.local_attn_size = self.generator.model.local_attn_size |
|
assert self.local_attn_size != -1 |
|
print(f"KV inference with {self.num_frame_per_block} frames per block") |
|
|
|
if self.num_frame_per_block > 1: |
|
self.generator.model.num_frame_per_block = self.num_frame_per_block |
|
|
|
def inference( |
|
self, |
|
noise: torch.Tensor, |
|
conditional_dict, |
|
initial_latent: Optional[torch.Tensor] = None, |
|
return_latents: bool = False, |
|
output_folder = None, |
|
name = None, |
|
mode = 'universal' |
|
) -> torch.Tensor: |
|
""" |
|
Perform inference on the given noise and text prompts. |
|
Inputs: |
|
noise (torch.Tensor): The input noise tensor of shape |
|
(batch_size, num_output_frames, num_channels, height, width). |
|
text_prompts (List[str]): The list of text prompts. |
|
initial_latent (torch.Tensor): The initial latent tensor of shape |
|
(batch_size, num_input_frames, num_channels, height, width). |
|
If num_input_frames is 1, perform image to video. |
|
If num_input_frames is greater than 1, perform video extension. |
|
return_latents (bool): Whether to return the latents. |
|
Outputs: |
|
video (torch.Tensor): The generated video tensor of shape |
|
(batch_size, num_output_frames, num_channels, height, width). |
|
It is normalized to be in the range [0, 1]. |
|
""" |
|
|
|
assert noise.shape[1] == 16 |
|
batch_size, num_channels, num_frames, height, width = noise.shape |
|
|
|
assert num_frames % self.num_frame_per_block == 0 |
|
num_blocks = num_frames // self.num_frame_per_block |
|
|
|
num_input_frames = initial_latent.shape[2] if initial_latent is not None else 0 |
|
num_output_frames = num_frames + num_input_frames |
|
|
|
output = torch.zeros( |
|
[batch_size, num_channels, num_output_frames, height, width], |
|
device=noise.device, |
|
dtype=noise.dtype |
|
) |
|
videos = [] |
|
vae_cache = copy.deepcopy(ZERO_VAE_CACHE) |
|
for j in range(len(vae_cache)): |
|
vae_cache[j] = None |
|
|
|
self.kv_cache1=self.kv_cache_keyboard=self.kv_cache_mouse=self.crossattn_cache=None |
|
|
|
if self.kv_cache1 is None: |
|
self._initialize_kv_cache( |
|
batch_size=batch_size, |
|
dtype=noise.dtype, |
|
device=noise.device |
|
) |
|
self._initialize_kv_cache_mouse_and_keyboard( |
|
batch_size=batch_size, |
|
dtype=noise.dtype, |
|
device=noise.device |
|
) |
|
|
|
self._initialize_crossattn_cache( |
|
batch_size=batch_size, |
|
dtype=noise.dtype, |
|
device=noise.device |
|
) |
|
else: |
|
|
|
for block_index in range(self.num_transformer_blocks): |
|
self.crossattn_cache[block_index]["is_init"] = False |
|
|
|
for block_index in range(len(self.kv_cache1)): |
|
self.kv_cache1[block_index]["global_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
self.kv_cache1[block_index]["local_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
self.kv_cache_mouse[block_index]["global_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
self.kv_cache_mouse[block_index]["local_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
self.kv_cache_keyboard[block_index]["global_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
self.kv_cache_keyboard[block_index]["local_end_index"] = torch.tensor( |
|
[0], dtype=torch.long, device=noise.device) |
|
|
|
current_start_frame = 0 |
|
if initial_latent is not None: |
|
timestep = torch.ones([batch_size, 1], device=noise.device, dtype=torch.int64) * 0 |
|
|
|
|
|
assert num_input_frames % self.num_frame_per_block == 0 |
|
num_input_blocks = num_input_frames // self.num_frame_per_block |
|
|
|
for _ in range(num_input_blocks): |
|
current_ref_latents = \ |
|
initial_latent[:, :, current_start_frame:current_start_frame + self.num_frame_per_block] |
|
output[:, :, current_start_frame:current_start_frame + self.num_frame_per_block] = current_ref_latents |
|
self.generator( |
|
noisy_image_or_video=current_ref_latents, |
|
conditional_dict=cond_current(conditional_dict, current_start_frame, self.num_frame_per_block, replace=True), |
|
timestep=timestep * 0, |
|
kv_cache=self.kv_cache1, |
|
kv_cache_mouse=self.kv_cache_mouse, |
|
kv_cache_keyboard=self.kv_cache_keyboard, |
|
crossattn_cache=self.crossattn_cache, |
|
current_start=current_start_frame * self.frame_seq_length, |
|
) |
|
current_start_frame += self.num_frame_per_block |
|
|
|
|
|
all_num_frames = [self.num_frame_per_block] * num_blocks |
|
|
|
for current_num_frames in all_num_frames: |
|
noisy_input = noise[ |
|
:, :, current_start_frame - num_input_frames:current_start_frame + current_num_frames - num_input_frames] |
|
|
|
current_actions = get_current_action(mode=mode) |
|
new_act, conditional_dict = cond_current(conditional_dict, current_start_frame, self.num_frame_per_block, replace=current_actions, mode=mode) |
|
|
|
|
|
for index, current_timestep in enumerate(self.denoising_step_list): |
|
|
|
timestep = torch.ones( |
|
[batch_size, current_num_frames], |
|
device=noise.device, |
|
dtype=torch.int64) * current_timestep |
|
|
|
if index < len(self.denoising_step_list) - 1: |
|
_, denoised_pred = self.generator( |
|
noisy_image_or_video=noisy_input, |
|
conditional_dict=new_act, |
|
timestep=timestep, |
|
kv_cache=self.kv_cache1, |
|
kv_cache_mouse=self.kv_cache_mouse, |
|
kv_cache_keyboard=self.kv_cache_keyboard, |
|
crossattn_cache=self.crossattn_cache, |
|
current_start=current_start_frame * self.frame_seq_length |
|
) |
|
next_timestep = self.denoising_step_list[index + 1] |
|
noisy_input = self.scheduler.add_noise( |
|
rearrange(denoised_pred, 'b c f h w -> (b f) c h w'), |
|
torch.randn_like(rearrange(denoised_pred, 'b c f h w -> (b f) c h w')), |
|
next_timestep * torch.ones( |
|
[batch_size * current_num_frames], device=noise.device, dtype=torch.long) |
|
) |
|
noisy_input = rearrange(noisy_input, '(b f) c h w -> b c f h w', b=denoised_pred.shape[0]) |
|
else: |
|
|
|
_, denoised_pred = self.generator( |
|
noisy_image_or_video=noisy_input, |
|
conditional_dict=new_act, |
|
timestep=timestep, |
|
kv_cache=self.kv_cache1, |
|
kv_cache_mouse=self.kv_cache_mouse, |
|
kv_cache_keyboard=self.kv_cache_keyboard, |
|
crossattn_cache=self.crossattn_cache, |
|
current_start=current_start_frame * self.frame_seq_length |
|
) |
|
|
|
|
|
output[:, :, current_start_frame:current_start_frame + current_num_frames] = denoised_pred |
|
|
|
|
|
context_timestep = torch.ones_like(timestep) * self.args.context_noise |
|
|
|
self.generator( |
|
noisy_image_or_video=denoised_pred, |
|
conditional_dict=new_act, |
|
timestep=context_timestep, |
|
kv_cache=self.kv_cache1, |
|
kv_cache_mouse=self.kv_cache_mouse, |
|
kv_cache_keyboard=self.kv_cache_keyboard, |
|
crossattn_cache=self.crossattn_cache, |
|
current_start=current_start_frame * self.frame_seq_length, |
|
) |
|
|
|
|
|
denoised_pred = denoised_pred.transpose(1,2) |
|
video, vae_cache = self.vae_decoder(denoised_pred.half(), *vae_cache) |
|
videos += [video] |
|
video = rearrange(video, "B T C H W -> B T H W C") |
|
video = ((video.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)[0] |
|
video = np.ascontiguousarray(video) |
|
mouse_icon = 'assets/images/mouse.png' |
|
if mode != 'templerun': |
|
config = ( |
|
conditional_dict["keyboard_cond"][0, : 1 + 4 * (current_start_frame + self.num_frame_per_block-1)].float().cpu().numpy(), |
|
conditional_dict["mouse_cond"][0, : 1 + 4 * (current_start_frame + self.num_frame_per_block-1)].float().cpu().numpy(), |
|
) |
|
else: |
|
config = ( |
|
conditional_dict["keyboard_cond"][0, : 1 + 4 * (current_start_frame + self.num_frame_per_block-1)].float().cpu().numpy() |
|
) |
|
process_video(video.astype(np.uint8), output_folder+f'/{name}_current.mp4', config, mouse_icon, mouse_scale=0.1, process_icon=False, mode=mode) |
|
current_start_frame += current_num_frames |
|
|
|
if input("Continue? (Press `n` to break)").strip() == "n": |
|
break |
|
|
|
videos_tensor = torch.cat(videos, dim=1) |
|
videos = rearrange(videos_tensor, "B T C H W -> B T H W C") |
|
videos = ((videos.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)[0] |
|
video = np.ascontiguousarray(videos) |
|
mouse_icon = 'assets/images/mouse.png' |
|
if mode != 'templerun': |
|
config = ( |
|
conditional_dict["keyboard_cond"][0, : 1 + 4 * (current_start_frame + self.num_frame_per_block-1)].float().cpu().numpy(), |
|
conditional_dict["mouse_cond"][0, : 1 + 4 * (current_start_frame + self.num_frame_per_block-1)].float().cpu().numpy(), |
|
) |
|
else: |
|
config = ( |
|
conditional_dict["keyboard_cond"][0, : 1 + 4 * (current_start_frame + self.num_frame_per_block-1)].float().cpu().numpy() |
|
) |
|
process_video(video.astype(np.uint8), output_folder+f'/{name}_icon.mp4', config, mouse_icon, mouse_scale=0.1, mode=mode) |
|
process_video(video.astype(np.uint8), output_folder+f'/{name}.mp4', config, mouse_icon, mouse_scale=0.1, process_icon=False, mode=mode) |
|
|
|
if return_latents: |
|
return output |
|
else: |
|
return video |
|
|
|
def _initialize_kv_cache(self, batch_size, dtype, device): |
|
""" |
|
Initialize a Per-GPU KV cache for the Wan model. |
|
""" |
|
kv_cache1 = [] |
|
if self.local_attn_size != -1: |
|
|
|
kv_cache_size = self.local_attn_size * self.frame_seq_length |
|
else: |
|
|
|
kv_cache_size = 15 * 1 * self.frame_seq_length |
|
|
|
for _ in range(self.num_transformer_blocks): |
|
kv_cache1.append({ |
|
"k": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device), |
|
"v": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device), |
|
"global_end_index": torch.tensor([0], dtype=torch.long, device=device), |
|
"local_end_index": torch.tensor([0], dtype=torch.long, device=device) |
|
}) |
|
|
|
self.kv_cache1 = kv_cache1 |
|
|
|
def _initialize_kv_cache_mouse_and_keyboard(self, batch_size, dtype, device): |
|
""" |
|
Initialize a Per-GPU KV cache for the Wan model. |
|
""" |
|
kv_cache_mouse = [] |
|
kv_cache_keyboard = [] |
|
if self.local_attn_size != -1: |
|
kv_cache_size = self.local_attn_size |
|
else: |
|
kv_cache_size = 15 * 1 |
|
for _ in range(self.num_transformer_blocks): |
|
kv_cache_keyboard.append({ |
|
"k": torch.zeros([batch_size, kv_cache_size, 16, 64], dtype=dtype, device=device), |
|
"v": torch.zeros([batch_size, kv_cache_size, 16, 64], dtype=dtype, device=device), |
|
"global_end_index": torch.tensor([0], dtype=torch.long, device=device), |
|
"local_end_index": torch.tensor([0], dtype=torch.long, device=device) |
|
}) |
|
kv_cache_mouse.append({ |
|
"k": torch.zeros([batch_size * self.frame_seq_length, kv_cache_size, 16, 64], dtype=dtype, device=device), |
|
"v": torch.zeros([batch_size * self.frame_seq_length, kv_cache_size, 16, 64], dtype=dtype, device=device), |
|
"global_end_index": torch.tensor([0], dtype=torch.long, device=device), |
|
"local_end_index": torch.tensor([0], dtype=torch.long, device=device) |
|
}) |
|
self.kv_cache_keyboard = kv_cache_keyboard |
|
self.kv_cache_mouse = kv_cache_mouse |
|
|
|
|
|
|
|
def _initialize_crossattn_cache(self, batch_size, dtype, device): |
|
""" |
|
Initialize a Per-GPU cross-attention cache for the Wan model. |
|
""" |
|
crossattn_cache = [] |
|
|
|
for _ in range(self.num_transformer_blocks): |
|
crossattn_cache.append({ |
|
"k": torch.zeros([batch_size, 257, 12, 128], dtype=dtype, device=device), |
|
"v": torch.zeros([batch_size, 257, 12, 128], dtype=dtype, device=device), |
|
"is_init": False |
|
}) |
|
self.crossattn_cache = crossattn_cache |
|
|