NON_WORKING_matrix_game_2 / api_engine.py
jbilcke-hf's picture
jbilcke-hf HF Staff
wip
5c50d1d
raw
history blame
16.2 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
MatrixGame V2 Engine
This module handles the core rendering and model inference for the Matrix-Game V2 project.
"""
import os
import logging
import argparse
import time
import torch
import numpy as np
from PIL import Image
import cv2
from omegaconf import OmegaConf
from torchvision.transforms import v2
from diffusers.utils import load_image
from typing import Dict, List, Tuple, Any, Optional, Union
from huggingface_hub import snapshot_download
from safetensors.torch import load_file
# Matrix-Game V2 specific imports
from pipeline import CausalInferenceStreamingPipeline
from wan.vae.wanx_vae import get_wanx_vae_wrapper
from demo_utils.vae_block3 import VAEDecoderWrapper
from utils.misc import set_seed
from utils.conditions import *
from utils.wan_wrapper import WanDiffusionWrapper
# Import utility functions
from api_utils import (
visualize_controls,
frame_to_jpeg,
load_scene_frames,
logger
)
class MatrixGameEngine:
"""
Core engine for Matrix-Game V2 model inference and frame generation.
"""
def __init__(self, args: Optional[argparse.Namespace] = None):
"""
Initialize the Matrix-Game V2 engine with configuration parameters.
Args:
args: Optional parsed command line arguments for model configuration
"""
# Set default parameters if args not provided
# V2 uses 352x640 as standard resolution
self.frame_width = getattr(args, 'frame_width', 640)
self.frame_height = getattr(args, 'frame_height', 352)
self.fps = getattr(args, 'fps', 16)
self.max_num_output_frames = getattr(args, 'max_num_output_frames', 90) # Reduced for real-time
self.seed = getattr(args, 'seed', 0)
self.config_path = getattr(args, 'config_path', 'configs/inference_yaml/inference_universal.yaml')
self.checkpoint_path = getattr(args, 'checkpoint_path', '')
self.pretrained_model_path = getattr(args, 'pretrained_model_path', 'Matrix-Game-2.0')
# Initialize state
self.frame_count = 0
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.weight_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
# Frame processing pipeline
self.frame_process = v2.Compose([
v2.Resize(size=(self.frame_height, self.frame_width), antialias=True),
v2.ToTensor(),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
# Cache scene initial frames
self.scenes = {
'forest': load_scene_frames('forest', self.frame_width, self.frame_height),
'desert': load_scene_frames('desert', self.frame_width, self.frame_height),
'beach': load_scene_frames('beach', self.frame_width, self.frame_height),
'hills': load_scene_frames('hills', self.frame_width, self.frame_height),
'river': load_scene_frames('river', self.frame_width, self.frame_height),
'icy': load_scene_frames('icy', self.frame_width, self.frame_height),
'mushroom': load_scene_frames('mushroom', self.frame_width, self.frame_height),
'plain': load_scene_frames('plain', self.frame_width, self.frame_height)
}
# Add universal scene for V2
self.scenes['universal'] = load_scene_frames('universal', self.frame_width, self.frame_height)
self.scenes['gta_drive'] = load_scene_frames('gta_drive', self.frame_width, self.frame_height)
self.scenes['temple_run'] = load_scene_frames('temple_run', self.frame_width, self.frame_height)
# Cache for preprocessed images and latents
self.scene_latents = {}
self.current_latent = None
self.current_frame_idx = 0
# Initialize Matrix-Game V2 pipeline
self.model_loaded = False
if not torch.cuda.is_available():
error_msg = "CUDA is not available. Matrix-Game V2 requires an NVIDIA GPU with CUDA support."
logger.error(error_msg)
raise RuntimeError(error_msg)
try:
self._init_models()
self.model_loaded = True
logger.info("Matrix-Game V2 models loaded successfully")
except Exception as e:
error_msg = f"Failed to initialize Matrix-Game V2 models: {str(e)}"
logger.error(error_msg)
raise RuntimeError(error_msg)
def _init_models(self):
"""Initialize Matrix-Game V2 models"""
try:
# Load configuration
self.config = OmegaConf.load(self.config_path)
# Initialize generator
generator = WanDiffusionWrapper(
**getattr(self.config, "model_kwargs", {}), is_causal=True)
# Initialize VAE decoder
current_vae_decoder = VAEDecoderWrapper()
# Check if model exists locally, if not download from Hugging Face
if not os.path.exists(self.pretrained_model_path) or not os.path.exists(os.path.join(self.pretrained_model_path, "Wan2.1_VAE.pth")):
logger.info(f"Model not found at {self.pretrained_model_path}, downloading from Hugging Face...")
try:
# Download from Skywork/Matrix-Game-2.0
downloaded_path = snapshot_download(
repo_id="Skywork/Matrix-Game-2.0",
local_dir=self.pretrained_model_path
)
logger.info(f"Successfully downloaded model to {downloaded_path}")
except Exception as e:
logger.error(f"Failed to download model from Hugging Face: {str(e)}")
raise
# Load VAE state dict
vae_state_dict = torch.load(os.path.join(self.pretrained_model_path, "Wan2.1_VAE.pth"), map_location="cpu")
decoder_state_dict = {}
for key, value in vae_state_dict.items():
if 'decoder.' in key or 'conv2' in key:
decoder_state_dict[key] = value
current_vae_decoder.load_state_dict(decoder_state_dict)
current_vae_decoder.to(self.device, torch.float16)
current_vae_decoder.requires_grad_(False)
current_vae_decoder.eval()
# Use standard compilation mode for server deployment
try:
current_vae_decoder.compile(mode="reduce-overhead")
except:
logger.warning("VAE decoder compilation failed, continuing without compilation")
# Initialize streaming pipeline for real-time generation
self.pipeline = CausalInferenceStreamingPipeline(self.config, generator=generator, vae_decoder=current_vae_decoder)
# Load checkpoint if provided
if self.checkpoint_path and os.path.exists(self.checkpoint_path):
logger.info("Loading checkpoint...")
state_dict = load_file(self.checkpoint_path)
self.pipeline.generator.load_state_dict(state_dict)
self.pipeline = self.pipeline.to(device=self.device, dtype=self.weight_dtype)
self.pipeline.vae_decoder.to(torch.float16)
# Initialize VAE encoder
vae = get_wanx_vae_wrapper(self.pretrained_model_path, torch.float16)
vae.requires_grad_(False)
vae.eval()
self.vae = vae.to(self.device, self.weight_dtype)
logger.info("Models loaded successfully")
# Preprocess initial images for all scenes
for scene_name, frames in self.scenes.items():
if frames and len(frames) > 0:
# Prepare the first frame as initial latent
self._prepare_scene_latent(scene_name, frames[0])
except Exception as e:
logger.error(f"Error loading models: {str(e)}")
raise
def _resizecrop(self, image, th, tw):
"""Resize and crop image to target dimensions"""
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
w, h = image.size
if h / w > th / tw:
new_w = int(w)
new_h = int(new_w * th / tw)
else:
new_h = int(h)
new_w = int(new_h * tw / th)
left = (w - new_w) / 2
top = (h - new_h) / 2
right = (w + new_w) / 2
bottom = (h + new_h) / 2
image = image.crop((left, top, right, bottom))
return image
def _prepare_scene_latent(self, scene_name: str, frame: np.ndarray):
"""Prepare and cache latent for a scene"""
try:
# Convert to PIL if needed
if isinstance(frame, np.ndarray):
image = Image.fromarray(frame)
else:
image = frame
# Resize and process
image = self._resizecrop(image, self.frame_height, self.frame_width)
processed = self.frame_process(image)[None, :, None, :, :].to(dtype=self.weight_dtype, device=self.device)
# Encode to latent space
padding_video = torch.zeros_like(processed).repeat(1, 1, 4 * (self.max_num_output_frames - 1), 1, 1)
img_cond = torch.concat([processed, padding_video], dim=2)
# Use tiling for memory efficiency
tiler_kwargs = {"tiled": True, "tile_size": [44, 80], "tile_stride": [23, 38]}
img_latent = self.vae.encode(img_cond, device=self.device, **tiler_kwargs).to(self.device)
# Create mask
mask_cond = torch.ones_like(img_latent)
mask_cond[:, :, 1:] = 0
# Store preprocessed data
self.scene_latents[scene_name] = {
'image': processed,
'latent': img_latent,
'mask': mask_cond,
'visual_context': self.vae.clip.encode_video(processed)
}
except Exception as e:
logger.error(f"Error preparing latent for scene {scene_name}: {str(e)}")
def generate_frame(self, scene_name: str, keyboard_condition: Optional[List] = None,
mouse_condition: Optional[List] = None) -> bytes:
"""
Generate the next frame based on current conditions using Matrix-Game V2 model.
Args:
scene_name: Name of the current scene
keyboard_condition: Keyboard input state
mouse_condition: Mouse input state
Returns:
bytes: JPEG bytes of the frame
"""
# Check if model is loaded
if not self.model_loaded:
error_msg = "Model not loaded. Cannot generate frames."
logger.error(error_msg)
raise RuntimeError(error_msg)
if not torch.cuda.is_available():
error_msg = "CUDA is no longer available. Cannot generate frames."
logger.error(error_msg)
raise RuntimeError(error_msg)
try:
# Map scene name to mode
mode_map = {
'universal': 'universal',
'gta_drive': 'gta_drive',
'temple_run': 'templerun',
'templerun': 'templerun'
}
mode = mode_map.get(scene_name, 'universal')
# Get cached latent or prepare new one
if scene_name not in self.scene_latents:
scene_frames = self.scenes.get(scene_name, self.scenes.get('universal', []))
if scene_frames:
self._prepare_scene_latent(scene_name, scene_frames[0])
else:
error_msg = f"No initial frames available for scene: {scene_name}"
logger.error(error_msg)
raise ValueError(error_msg)
scene_data = self.scene_latents.get(scene_name)
if not scene_data:
error_msg = f"Failed to prepare latent for scene: {scene_name}"
logger.error(error_msg)
raise ValueError(error_msg)
# Prepare conditions
if keyboard_condition is None:
keyboard_condition = [[0, 0, 0, 0, 0, 0]]
if mouse_condition is None:
mouse_condition = [[0, 0]]
# Generate conditions for multiple frames (for streaming)
num_frames = 5 # Generate 5 frames at a time for smoother playback
# Create condition tensors
keyboard_tensor = torch.tensor(keyboard_condition * num_frames, dtype=self.weight_dtype).unsqueeze(0).to(self.device)
mouse_tensor = torch.tensor(mouse_condition * num_frames, dtype=self.weight_dtype).unsqueeze(0).to(self.device)
# Build conditional dict
cond_concat = torch.cat([scene_data['mask'][:, :4], scene_data['latent']], dim=1)
conditional_dict = {
"cond_concat": cond_concat.to(device=self.device, dtype=self.weight_dtype),
"visual_context": scene_data['visual_context'].to(device=self.device, dtype=self.weight_dtype),
"keyboard_cond": keyboard_tensor
}
# Add mouse condition for modes that support it
if mode in ['universal', 'gta_drive']:
conditional_dict['mouse_cond'] = mouse_tensor
# Generate noise for the frames
sampled_noise = torch.randn(
[1, 16, num_frames, 44, 80], device=self.device, dtype=self.weight_dtype
)
# Generate frames with streaming pipeline
with torch.no_grad():
# Set seed for reproducibility
set_seed(self.seed + self.frame_count)
# Use inference method for single batch generation
outputs = self.pipeline.inference(
noise=sampled_noise,
conditional_dict=conditional_dict,
return_latents=True, # Return latents for faster decoding
output_folder=None, # Don't save to disk
name=None,
mode=mode
)
# Decode first frame from latent
if outputs is not None and len(outputs) > 0:
# Extract first frame
frame_latent = outputs[0:1, :, 0:1] # Get first frame
decoded = self.pipeline.vae_decoder.decode(frame_latent)
# Convert to numpy
frame = decoded[0, :, 0].permute(1, 2, 0).cpu().numpy()
frame = ((frame + 1) * 127.5).clip(0, 255).astype(np.uint8)
else:
# Generation failed
error_msg = "Failed to generate frame: No output from model"
logger.error(error_msg)
raise RuntimeError(error_msg)
self.frame_count += 1
except Exception as e:
error_msg = f"Error generating frame with Matrix-Game V2 model: {str(e)}"
logger.error(error_msg)
raise RuntimeError(error_msg)
# Add visualization of input controls
frame = visualize_controls(
frame, keyboard_condition, mouse_condition,
self.frame_width, self.frame_height
)
# Convert frame to JPEG
return frame_to_jpeg(frame, self.frame_height, self.frame_width)
def get_valid_scenes(self) -> List[str]:
"""
Get a list of valid scene names.
Returns:
List[str]: List of valid scene names
"""
return list(self.scenes.keys())