Spaces:
Running
on
L40S
Running
on
L40S
Merge branch 'main' of hf.co:spaces/jbilcke-hf/LIA-X-testing
Browse files- gradio_tabs/img_edit.py +37 -21
- networks/generator.py +31 -14
gradio_tabs/img_edit.py
CHANGED
@@ -55,21 +55,31 @@ def img_preprocessing(img_path, size):
|
|
55 |
return imgs_norm, w, h
|
56 |
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
torchvision.transforms.Resize((size,size), antialias=True),
|
61 |
-
])
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
-
def
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
return transform(img)
|
72 |
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def img_denorm(img):
|
75 |
img = img.clamp(-1, 1).cpu()
|
@@ -78,17 +88,23 @@ def img_denorm(img):
|
|
78 |
return img
|
79 |
|
80 |
|
81 |
-
def img_postprocessing(
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
def img_edit(gen, device):
|
94 |
|
|
|
55 |
return imgs_norm, w, h
|
56 |
|
57 |
|
58 |
+
# Pre-compile resize transforms for better performance
|
59 |
+
resize_transform_cache = {}
|
|
|
|
|
60 |
|
61 |
+
def get_resize_transform(size):
|
62 |
+
"""Get cached resize transform - creates once, reuses many times"""
|
63 |
+
if size not in resize_transform_cache:
|
64 |
+
# Only create the transform if it doesn't exist in cache
|
65 |
+
resize_transform_cache[size] = torchvision.transforms.Resize(
|
66 |
+
size,
|
67 |
+
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
|
68 |
+
antialias=True
|
69 |
+
)
|
70 |
+
return resize_transform_cache[size]
|
71 |
|
72 |
|
73 |
+
def resize(img, size):
|
74 |
+
"""Use cached resize transform"""
|
75 |
+
transform = get_resize_transform((size, size))
|
76 |
+
return transform(img)
|
77 |
|
|
|
78 |
|
79 |
+
def resize_back(img, w, h):
|
80 |
+
"""Use cached resize transform for back operation"""
|
81 |
+
transform = get_resize_transform((h, w))
|
82 |
+
return transform(img)
|
83 |
|
84 |
def img_denorm(img):
|
85 |
img = img.clamp(-1, 1).cpu()
|
|
|
88 |
return img
|
89 |
|
90 |
|
91 |
+
def img_postprocessing(img, w, h):
|
92 |
+
# Resize on GPU (using cached transform)
|
93 |
+
image = resize_back(image, w, h)
|
94 |
+
|
95 |
+
# Denormalize ON GPU (avoid early CPU transfer)
|
96 |
+
image = image.clamp(-1, 1) # Still on GPU
|
97 |
+
image = (image - image.min()) / (image.max() - image.min()) # Still on GPU
|
98 |
+
|
99 |
+
# Single optimized CPU transfer
|
100 |
+
image = image.squeeze(0).permute(1, 2, 0).contiguous() # contiguous() for fast transfer
|
101 |
+
img_output = (image.cpu().numpy() * 255).astype(np.uint8) # Single CPU transfer
|
102 |
+
|
103 |
+
# Use PIL directly (faster than imageio)
|
104 |
+
pil_image = Image.fromarray(img_output)
|
105 |
+
|
106 |
+
# return the PIL image directly
|
107 |
+
return pil_image
|
108 |
|
109 |
def img_edit(gen, device):
|
110 |
|
networks/generator.py
CHANGED
@@ -17,6 +17,16 @@ class Generator(nn.Module):
|
|
17 |
# encoder
|
18 |
self.enc = Encoder(style_dim, motion_dim, scale)
|
19 |
self.dec = Decoder(style_dim, motion_dim, scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def get_alpha(self, x):
|
22 |
return self.enc.enc_motion(x)
|
@@ -38,9 +48,11 @@ class Generator(nn.Module):
|
|
38 |
enc_r2t_end = time.time()
|
39 |
print(f"[Generator.edit_img] enc_r2t encoding took: {(enc_r2t_end - enc_r2t_start) * 1000:.2f} ms")
|
40 |
|
41 |
-
# Alpha modification timing
|
42 |
alpha_mod_start = time.time()
|
43 |
-
|
|
|
|
|
44 |
alpha_mod_end = time.time()
|
45 |
print(f"[Generator.edit_img] Alpha modification took: {(alpha_mod_end - alpha_mod_start) * 1000:.2f} ms")
|
46 |
|
@@ -59,13 +71,15 @@ class Generator(nn.Module):
|
|
59 |
return img_recon
|
60 |
|
61 |
def animate(self, img_source, vid_target, d_l, v_l):
|
62 |
-
|
63 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :])
|
64 |
|
65 |
vid_target_recon = []
|
66 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
67 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
for i in tqdm(range(vid_target.size(1))):
|
71 |
img_target = vid_target[:, i, :, :, :]
|
@@ -77,14 +91,16 @@ class Generator(nn.Module):
|
|
77 |
return vid_target_recon
|
78 |
|
79 |
def animate_batch(self, img_source, vid_target, d_l, v_l, chunk_size):
|
80 |
-
|
81 |
b,t,c,h,w = vid_target.size()
|
82 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :]) # 1x40
|
83 |
|
84 |
vid_target_recon = []
|
85 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
86 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
87 |
-
|
|
|
|
|
|
|
88 |
|
89 |
bs = chunk_size
|
90 |
chunks = t//bs
|
@@ -114,14 +130,16 @@ class Generator(nn.Module):
|
|
114 |
return vid_target_recon # BCTHW
|
115 |
|
116 |
def edit_vid(self, vid_target, d_l, v_l):
|
117 |
-
|
118 |
img_source = vid_target[:, 0, :, :, :]
|
119 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :])
|
120 |
|
121 |
vid_target_recon = []
|
122 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
123 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
124 |
-
|
|
|
|
|
|
|
125 |
|
126 |
for i in tqdm(range(vid_target.size(1))):
|
127 |
img_target = vid_target[:, i, :, :, :]
|
@@ -133,7 +151,6 @@ class Generator(nn.Module):
|
|
133 |
return vid_target_recon
|
134 |
|
135 |
def edit_vid_batch(self, vid_target, d_l, v_l, chunk_size):
|
136 |
-
|
137 |
b,t,c,h,w = vid_target.size()
|
138 |
img_source = vid_target[:, 0, :, :, :]
|
139 |
alpha_start = self.get_alpha(img_source) # 1x40
|
@@ -141,7 +158,10 @@ class Generator(nn.Module):
|
|
141 |
vid_target_recon = []
|
142 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
143 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
144 |
-
|
|
|
|
|
|
|
145 |
|
146 |
bs = chunk_size
|
147 |
chunks = t//bs
|
@@ -170,9 +190,7 @@ class Generator(nn.Module):
|
|
170 |
|
171 |
return vid_target_recon # BCTHW
|
172 |
|
173 |
-
|
174 |
def interpolate_img(self, img_source, d_l, v_l):
|
175 |
-
|
176 |
vid_target_recon = []
|
177 |
|
178 |
step = 16
|
@@ -222,5 +240,4 @@ class Generator(nn.Module):
|
|
222 |
|
223 |
vid_target_recon = torch.cat(vid_target_recon, dim=2) # BCTHW
|
224 |
|
225 |
-
return vid_target_recon
|
226 |
-
|
|
|
17 |
# encoder
|
18 |
self.enc = Encoder(style_dim, motion_dim, scale)
|
19 |
self.dec = Decoder(style_dim, motion_dim, scale)
|
20 |
+
|
21 |
+
# Pre-allocate commonly used tensors to avoid repeated allocations
|
22 |
+
self._device = None
|
23 |
+
self._cached_tensors = {}
|
24 |
+
|
25 |
+
@property
|
26 |
+
def device(self):
|
27 |
+
if self._device is None:
|
28 |
+
self._device = next(self.parameters()).device
|
29 |
+
return self._device
|
30 |
|
31 |
def get_alpha(self, x):
|
32 |
return self.enc.enc_motion(x)
|
|
|
48 |
enc_r2t_end = time.time()
|
49 |
print(f"[Generator.edit_img] enc_r2t encoding took: {(enc_r2t_end - enc_r2t_start) * 1000:.2f} ms")
|
50 |
|
51 |
+
# Alpha modification timing - OPTIMIZED
|
52 |
alpha_mod_start = time.time()
|
53 |
+
# Create tensor directly on the same device as alpha_r2s
|
54 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
55 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
56 |
alpha_mod_end = time.time()
|
57 |
print(f"[Generator.edit_img] Alpha modification took: {(alpha_mod_end - alpha_mod_start) * 1000:.2f} ms")
|
58 |
|
|
|
71 |
return img_recon
|
72 |
|
73 |
def animate(self, img_source, vid_target, d_l, v_l):
|
|
|
74 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :])
|
75 |
|
76 |
vid_target_recon = []
|
77 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
78 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
79 |
+
|
80 |
+
# Optimized alpha modification
|
81 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
82 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
83 |
|
84 |
for i in tqdm(range(vid_target.size(1))):
|
85 |
img_target = vid_target[:, i, :, :, :]
|
|
|
91 |
return vid_target_recon
|
92 |
|
93 |
def animate_batch(self, img_source, vid_target, d_l, v_l, chunk_size):
|
|
|
94 |
b,t,c,h,w = vid_target.size()
|
95 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :]) # 1x40
|
96 |
|
97 |
vid_target_recon = []
|
98 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
99 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
100 |
+
|
101 |
+
# Optimized alpha modification
|
102 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
103 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
104 |
|
105 |
bs = chunk_size
|
106 |
chunks = t//bs
|
|
|
130 |
return vid_target_recon # BCTHW
|
131 |
|
132 |
def edit_vid(self, vid_target, d_l, v_l):
|
|
|
133 |
img_source = vid_target[:, 0, :, :, :]
|
134 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :])
|
135 |
|
136 |
vid_target_recon = []
|
137 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
138 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
139 |
+
|
140 |
+
# Optimized alpha modification
|
141 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
142 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
143 |
|
144 |
for i in tqdm(range(vid_target.size(1))):
|
145 |
img_target = vid_target[:, i, :, :, :]
|
|
|
151 |
return vid_target_recon
|
152 |
|
153 |
def edit_vid_batch(self, vid_target, d_l, v_l, chunk_size):
|
|
|
154 |
b,t,c,h,w = vid_target.size()
|
155 |
img_source = vid_target[:, 0, :, :, :]
|
156 |
alpha_start = self.get_alpha(img_source) # 1x40
|
|
|
158 |
vid_target_recon = []
|
159 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
160 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
161 |
+
|
162 |
+
# Optimized alpha modification
|
163 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
164 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
165 |
|
166 |
bs = chunk_size
|
167 |
chunks = t//bs
|
|
|
190 |
|
191 |
return vid_target_recon # BCTHW
|
192 |
|
|
|
193 |
def interpolate_img(self, img_source, d_l, v_l):
|
|
|
194 |
vid_target_recon = []
|
195 |
|
196 |
step = 16
|
|
|
240 |
|
241 |
vid_target_recon = torch.cat(vid_target_recon, dim=2) # BCTHW
|
242 |
|
243 |
+
return vid_target_recon
|
|